首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification of low-abundance plasma-membrane (PM) protein complexes is a challenging task. We devised a tandem affinity purification tag termed the HPB tag, which contains the biotin carboxyl carrier protein domain (BCCD) of Arabidopsis 3-methylcrotonal CoA carboxylase. The BCCD is biotinylated in vivo , and the tagged protein can be captured by streptavidin beads. All five C-terminally tagged Arabidopsis proteins tested, including four PM proteins, were functional and biotinylated with high efficiency in Arabidopsis. Transgenic Arabidopsis plants expressing an HPB-tagged protein, RPS2::HPB, were used to develop a method to purify protein complexes containing the HPB-tagged protein. RPS2 is a membrane-associated disease resistance protein of low abundance. The purification method involves microsomal fractionation, chemical cross-linking, solubilization, and one-step affinity purification using magnetic streptavidin beads, followed by protein identification using LC-MS/MS. We identified RIN4, a known RPS2 interactor, as well as other potential components of the RPS2 complex(es). Thus, the HPB tag method is suitable for the purification of low-abundance PM protein complexes.  相似文献   

2.
Translation initiation promoted by picornavirus internal ribosome entry site (IRES) elements is dependent on the association of specific IRES sequences to the initiation factor eIF4G. However the RNA determinants interacting with other components of the translational machinery are still unknown. In this study, we have identified novel RNA-protein interactions between the foot-and-mouth disease virus (FMDV) IRES and three translation initiation factors. A doublet of 116/110 kDa that crosslinked to the FMDV IRES is a component of eIF3. We show here that domain 5 holds the preferential binding site for eIF3, although this complex initiation factor can establish multiple contacts with the IRES structure. We have also identified the phylogenetically conserved hairpin of domain 5 as the RNA motif responsible for eIF4B interaction. Mutation of this stem-loop structure abrogated eIF4B, but not eIF3, binding to the IRES. Remarkably, IRES mutants severely affected in their interaction with eIF4B showed a mild reduction in IRES activity when tested in the context of a bicistronic expression vector in transfected cells. Finally, we provide evidence of the interaction of eIF4GII with FMDV IRES, the RNA determinants for this interaction being shared with its functional homolog eIF4GI. The FMDV Lb protease generated a C-terminal fragment of eIF4GII that binds to the IRES as efficiently as the intact protein. Competition experiments showed that titration of eIF4B or p110/116 interaction with the FMDV IRES required a large excess of competitor relative to eIF4G, strongly suggesting that eIF4G-IRES interaction is a limiting factor to titrate the IRES. Comparative analysis of the activity of IRES mutants affected in domains 4 and 5 regarding their pattern of RNA-protein complex formation demonstrates that while binding of eIF4B with the FMDV IRES is dispensable, interaction of eIF4G is a central feature of the activity of this element.  相似文献   

3.
The limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation. Additionally, the binding of PCBP2 to the 5'-terminal stem-loop structure (stem-loop I or cloverleaf) in concert with viral protein 3CD is required for initiation of RNA synthesis directed by poliovirus replication complexes. PCBP1, a highly homologous isoform of PCBP2, binds to poliovirus stem-loop I with an affinity similar to that of PCBP2; however, PCBP1 has reduced affinity for stem-loop IV. Using a dicistronic poliovirus RNA, we were able to functionally uncouple translation and RNA replication in PCBP-depleted extracts. Our results demonstrate that PCBP1 rescues RNA replication but is not able to rescue translation initiation. We have also generated mutated versions of PCBP2 containing site-directed lesions in each of the three RNA-binding domains. Specific defects in RNA binding to either stem-loop I and/or stem-loop IV suggest that these domains may have differential functions in translation and RNA replication. These predictions were confirmed in functional assays that allow separation of RNA replication activities from translation. Our data have implications for differential picornavirus template utilization during viral translation and RNA replication and suggest that specific PCBP2 domains may have distinct roles in these activities.  相似文献   

4.
5.
Wang L  Jeng KS  Lai MM 《Journal of virology》2011,85(16):7954-7964
Sequences in the 5' untranslated region (5'UTR) of hepatitis C virus (HCV) RNA is important for modulating both translation and RNA replication. The translation of the HCV genome depends on an internal ribosome entry site (IRES) located within the 341-nucleotide 5'UTR, while RNA replication requires a smaller region. A question arises whether the replication and translation functions require different regions of the 5'UTR and different sets of RNA-binding proteins. Here, we showed that the 5'-most 157 nucleotides of HCV RNA is the minimum 5'UTR for RNA replication, and it partially overlaps with the IRES. Stem-loops 1 and 2 of the 5'UTR are essential for RNA replication, whereas stem-loop 1 is not required for translation. We also found that poly(C)-binding protein 2 (PCBP2) bound to the replication region of the 5'UTR and associated with detergent-resistant membrane fractions, which are the sites of the HCV replication complex. The knockdown of PCBP2 by short hairpin RNA decreased the amounts of HCV RNA and nonstructural proteins. Antibody-mediated blocking of PCBP2 reduced HCV RNA replication in vitro, indicating that PCBP2 is directly involved in HCV RNA replication. Furthermore, PCBP2 knockdown reduced IRES-dependent translation preferentially from a dual reporter plasmid, suggesting that PCBP2 also regulated IRES activity. These findings indicate that PCBP2 participates in both HCV RNA replication and translation. Moreover, PCBP2 interacts with HCV 5'- and 3'UTR RNA fragments to form an RNA-protein complex and induces the circularization of HCV RNA, as revealed by electron microscopy. This study thus demonstrates the mechanism of the participation of PCBP2 in HCV translation and replication and provides physical evidence for HCV RNA circularization through 5'- and 3'UTR interaction.  相似文献   

6.
Translation initiation on HIV genomic RNA relies on both cap and Internal Ribosome Entry Site (IRES) dependant mechanisms that are regulated throughout the cell cycle. During a unique phenomenon, the virus recruits initiation complexes through RNA structures located within Gag coding sequence, downstream of the initiation codon. We analyzed initiation complexes paused on the HIV-2 gag IRES and revealed that they contain all the canonical initiation factors except eIF4E and eIF1. We report that eIF3 and the small ribosomal subunit bind HIV RNA within gag open reading frame. We thus propose a novel two step model whereby the initial event is the formation of a ternary eIF3/40S/IRES complex. In a second step, dependent on most of the canonical initiation factors, the complex is rearranged to transfer the ribosome on the initiation codons. The absolute requirement of this large structure for HIV translation defines a new function for a coding region. Moreover, the level of information compaction within this viral genome reveals an additional level of evolutionary constraint on the coding sequence. The conservation of this IRES and its properties in rapidly evolving viruses suggest an important role in the virus life cycle and highlight an attractive new therapeutic target.  相似文献   

7.
Translation initiation in Hepatitis C Virus (HCV) is mediated by Internal Ribosome Entry Site (IRES), which is independent of cap-structure and uses a limited number of canonical initiation factors. During translation initiation IRES–40S complex formation depends on high affinity interaction of IRES with ribosomal proteins. Earlier, it has been shown that ribosomal protein S5 (RPS5) interacts with HCV IRES. Here, we have extensively characterized the HCV IRES–RPS5 interaction and demonstrated its role in IRES function. Computational modelling and RNA–protein interaction studies demonstrated that the beta hairpin structure within RPS5 is critically required for the binding with domains II and IV. Mutations disrupting IRES–RPS5 interaction drastically reduced the 80S complex formation and the corresponding IRES activity. Computational analysis and UV cross-linking experiments using various IRES-mutants revealed interplay between domains II and IV mediated by RPS5. In addition, present study demonstrated that RPS5 interaction is unique to HCV IRES and is not involved in 40S–3′ UTR interaction. Further, partial silencing of RPS5 resulted in preferential inhibition of HCV RNA translation. However, global translation was marginally affected by partial silencing of RPS5. Taken together, results provide novel molecular insights into IRES–RPS5 interaction and unravel its functional significance in mediating internal initiation of translation.  相似文献   

8.
Eukaryotic translation initiation factor 4B (eIF4B) binds directly to the internal ribosome entry site (IRES) of foot-and-mouth disease virus (FMDV). Mutations in all three subdomains of the IRES stem-loop 4 reduce binding of eIF4B and translation efficiency in parallel, indicating that eIF4B is functionally involved in FMDV translation initiation. In reticulocyte lysate devoid of polypyrimidine tract-binding protein (PTB), eIF4B still bound well to the wild-type IRES, even after removal of the major PTB-binding site. In conclusion, the interaction of eIF4B with the FMDV IRES is essential for IRES function but independent of PTB.  相似文献   

9.
Plakophilins 1–3 (PKP1–3) are desmosomal proteins of the p120ctn family of armadillo-related proteins that are essential for organizing the desmosomal plaque. Recent findings identified PKPs in stress granules, suggesting an association with the translational machinery. However, a role of PKPs in controlling translation remained elusive so far. In this study, we show a direct association of PKP1 with the eukaryotic translation initiation factor 4A1 (eIF4A1). PKP1 stimulated eIF4A1-dependent translation via messenger RNA cap and encephalomyocarditis virus internal ribosomal entry site (IRES) structures, whereas eIF4A1-independent translation via hepatitis C virus IRES was not affected. PKP1 copurified with eIF4A1 in the cap complex, and its overexpression stimulated eIF4A1 recruitment into cap-binding complexes. At the molecular level, PKP1 directly promoted eIF4A1 adenosine triphosphatase activity. The stimulation of translation upon PKP1 overexpression correlated with the up-regulation of proliferation and cell size. In conclusion, these findings identify PKP1 as a regulator of translation and proliferation via modulation of eIF4A1 activity and suggest that PKP1 controls cell growth in physiological and pathological conditions.  相似文献   

10.
The positive-strand RNA genome of the Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) in the 5′untranslated region (5′UTR) and structured sequence elements within the 3′UTR, but no poly(A) tail. Employing a limited set of initiation factors, the HCV IRES coordinates the 5′cap-independent assembly of the 43S pre-initiation complex at an internal initiation codon located in the IRES sequence. We have established a Huh7 cell-derived in vitro translation system that shows a 3′UTR-dependent enhancement of 43S pre-initiation complex formation at the HCV IRES. Through the use of tobramycin (Tob)-aptamer affinity chromatography, we identified the Insulin-like growth factor-II mRNA-binding protein 1 (IGF2BP1) as a factor that interacts with both, the HCV 5′UTR and 3′UTR. We report that IGF2BP1 specifically enhances translation at the HCV IRES, but it does not affect 5′cap-dependent translation. RNA interference against IGF2BP1 in HCV replicon RNA-containing Huh7 cells reduces HCV IRES-mediated translation, whereas replication remains unaffected. Interestingly, we found that endogenous IGF2BP1 specifically co-immunoprecipitates with HCV replicon RNA, the ribosomal 40S subunit, and eIF3. Furthermore eIF3 comigrates with IGF2BP1 in 80S ribosomal complexes when a reporter mRNA bearing both the HCV 5′UTR and HCV 3′UTR is translated. Our data suggest that IGF2BP1, by binding to the HCV 5′UTR and/or HCV 3′UTR, recruits eIF3 and enhances HCV IRES-mediated translation.  相似文献   

11.
Expression of the two isoforms p55 and p40 of HIV-1 Gag proteins relies on distinct translation initiation mechanisms, a cap-dependent initiation and two internal ribosome entry sites (IRESs). The regulation of these processes is complex and remains poorly understood. This study was focused on the influence of the 5'-UTR and on the requirement for the eukaryotic initiation factor (eIF)4F complex components. By using an in?vitro system, we showed substantial involvement of the 5'-UTR in the control of p55 expression. This highly structured 5'-UTR requires the eIF4F complex, especially RNA helicase eIF4A, which mediates initiation at the authentic AUG codon. In addition, the 5'-UTR regulates expression in an RNA concentration-dependent manner, with a high concentration of RNA triggering specific reduction of full-length Gag p55 production. HIV-1 genomic RNA also has the ability to use a strong IRES element located in the gag coding region. We show that this mechanism is particularly efficient, and that activity of this IRES is only poorly dependent on RNA helicase eIF4A when the viral 5'-UTR is removed. HIV-1 genomic mRNA exhibits in?vitro translational features that allow the expression of Gag p55 protein by different mechanisms that involve different requirements for eIF4E, eIF4G, and eIF4A. This suggests that HIV-1 could adapt to its mode of translation according to the availability of the initiation factors in the infected cell.  相似文献   

12.
Nonsense-mediated messenger RNA decay (NMD) generally degrades mRNAs that prematurely terminate translation as a means of quality control. NMD in mammalian cells targets newly spliced mRNA that is bound by the cap-binding protein heterodimer CBP80/20 and one or more post-splicing exon junction complexes during a pioneer round of translation. NMD targets mRNA that initiates translation using the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES), therefore NMD might target not only CBP80/20-bound mRNA but also its remodelled product, eIF4E-bound mRNA. Here, we provide evidence that NMD triggered by translation initiation at the EMCV IRES, similar to NMD triggered by translation initiation at an mRNA cap, targets CBP80/20-bound mRNA but does not detectably target eIF4E-bound mRNA. We show that EMCV IRES-initiated translation undergoes a CBP80/20-associated pioneer round of translation that results in CBP80/20-dependent and Upf factor-dependent NMD when translation terminates prematurely.  相似文献   

13.
Translation initiation of Coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5′ untranslated region. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins. We have, previously, described that the Sabin3-like mutation (U475 → C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. With the aim to identify proteins interacting with CVB3 wild-type and Sabin3-like IRESes and to study interactions between HeLa cell or BHK-21 protein extracts and CVB3 RNAs, UV-cross-linking assays were performed. We have observed a number of proteins that specifically interact with both RNAs. In particular, molecular weights of five of these proteins resemble to those of the eukaryotic translation initiation factors 4G, 3b, 4B, and PTB. According to cross-linking patterns obtained, we have demonstrated a better affinity of CVB3 RNA binding to BHK-21 proteins and a reduced interaction of the mutant RNA with almost cellular polypeptides compared to the wild-type IRES. On the basis of phylogeny of some initiation factors and on the knowledge of the initiation of translation process, we focused on the interaction of both IRESes with eIF3, p100 (eIF4G), and 40S ribosomal subunit by filter-binding assays. We have demonstrated a better affinity of binding to the wild-type CVB3 IRES. Thus, the reduction efficiency of the mutant RNA to bind to cellular proteins involved in the translation initiation could be the reason behind inefficient IRES function.  相似文献   

14.
Gallie DR 《Journal of virology》2001,75(24):12141-12152
The 5' leader of tobacco etch virus (TEV) genomic RNA directs efficient translation from the naturally uncapped viral mRNA. Two distinct regions within the TEV 143-nucleotide leader confer cap-independent translation in vivo even when present in the intercistronic region of a discistronic mRNA, indicating that the TEV leader contains an internal ribosome entry site (IRES). In this study, the requirements for TEV IRES activity were investigated. The TEV IRES enhanced translation of monocistronic or dicistronic mRNAs in vitro under competitive conditions, i.e., at high RNA concentration or in lysate partially depleted of eukaryotic initiation factor 4F (eIF4F) and eIFiso4F, the two cap binding complexes in plants. The translational advantage conferred by the TEV IRES under these conditions was lost when the lysate reduced in eIF4F and eIFiso4F was supplemented with eIF4F (or, to a lesser extent, eIFiso4F) but not when supplemented with eIF4E, eIFiso4E, eIF4A, or eIF4B. eIF4G, the large subunit of eIF4F, was responsible for the competitive advantage conferred by the TEV IRES. TEV IRES activity was enhanced moderately by the poly(A)-binding protein. These observations suggest that the TEV IRES directs cap-independent translation through a mechanism that involves eIF4G specifically.  相似文献   

15.
Hepatitis C virus (HCV) infection is treated with interferon (IFN)-based therapy. The mechanisms by which IFN suppresses HCV replication are not known, and only limited efficacy is achieved with therapy because the virus directs mechanisms to resist the host IFN response. In the present study we characterized the effects of IFN action upon the replication of two distinct quasispecies of an HCV replicon whose encoded NS5A protein exhibited differential abilities to bind and inhibit protein kinase R (PKR). Metabolic labeling experiments revealed that IFN had little overall effect upon HCV protein stability or polyprotein processing but specifically blocked translation of the HCV RNA, such that the replication of both viral quasispecies was suppressed by IFN treatment of the Huh7 host cells. However, within cells expressing an NS5A variant that inhibited PKR, we observed a reduced level of eukaryotic initiation factor 2 alpha subunit (eIF2alpha) phosphorylation and a concomitant increase in HCV protein synthetic rates, enhancement of viral RNA replication, and a partial rescue of viral internal ribosome entry site (IRES) function from IFN suppression. Assessment of the ribosome distribution of the HCV replicon RNA demonstrated that the NS5A-mediated block in eIF2alpha phosphorylation resulted in enhanced recruitment of the HCV RNA into polyribosome complexes in vivo but only partially rescued the RNA from polyribosome dissociation induced by IFN treatment. Examination of cellular proteins associated with HCV-translation complexes in IFN-treated cells identified the P56 protein as an eIF3-associated factor that fractionated with the initiator ribosome-HCV RNA complex. Importantly, we found that P56 could independently suppress HCV IRES function both in vitro and in vivo, but a mutant P56 that was unable to bind eIF3 had no suppressive action. We conclude that IFN blocks HCV replication through translational control programs involving PKR and P56 to, respectively, target eIF2- and eIF3-dependent steps in the viral RNA translation initiation process.  相似文献   

16.
The cricket paralysis virus (CrPV) intergenic region (IGR) internal ribosome entry site (IRES) uses an unusual mechanism of initiating translation, whereby the IRES occupies the P-site of the ribosome and the initiating tRNA enters the A-site. In vitro experiments have demonstrated that the CrPV IGR IRES is able to bind purified ribosomes and form 80S complexes capable of synthesizing small peptides in the absence of any translation initiation factors. These results suggest that initiation by this IRES is factor-independent. To determine whether the IGR IRES functions in the absence of initiation factors in vivo, we assayed IGR IRES activity in various yeast strains harboring mutations in canonical translation initiation factors. We used a dicistronic reporter assay in yeast to determine whether the CrPV IGR IRES is able to promote translation sufficient to support growth in the presence of various deletions or mutations in translation initiation factors. Using this assay, we have previously shown that the CrPV IGR IRES functions efficiently in yeast when ternary complexes (eIF2•GTP•initiator tRNAmet) are reduced. Here, we demonstrate that the CrPV IGR IRES activity does not require the eukaryotic initiation factors eIF4G1 or eIF5B, and it is enhanced when eIF2B, the eIF3b subunit of eIF3, or eIF4E are impaired. Taken together, these data support a model in which the CrPV IGR IRES is capable of initiating protein synthesis in the absence of any initiation factors in vivo, and suggests that the CrPV IGR IRES initiates translation by directly recruiting the ribosomal subunits in vivo.  相似文献   

17.
Translation of the hepatitis C virus (HCV) genomic RNA initiates from an internal ribosome entry site (IRES) in its 5′ untranslated region and requires a minimal subset of translation initiation factors to occur, namely eukaryotic initiation factor (eIF) 2 and eIF3. Low-resolution structural information has revealed how the HCV IRES RNA binds human eIF3 and the 40S ribosomal subunit and positions the start codon for initiation. However, the exact nature of the interactions between the HCV IRES RNA and the translational machinery remains unknown. Using limited proteolysis and mass spectrometry, we show that distinct regions of human eIF3 are sufficient for binding to the HCV IRES RNA and the 40S subunit. Notably, the eIF3 subunit eIF3b is protected by HCV IRES RNA binding, yet is exposed in the complex when compared to subunits eIF3e, eIF3f, eIF3h, and eIF3l. Limited proteolysis reveals that eIF3 binding to the 40S ribosomal subunit occurs through many redundant interactions that can compensate for each other. These data suggest how the HCV IRES binds to specific regions of eIF3 to target the translational machinery to the viral genomic RNA and provide a framework for modeling the architecture of intact human eIF3.  相似文献   

18.
EV71 (enterovirus 71) RNA contains an internal ribosomal entry site (IRES) that directs cap-independent initiation of translation. IRES-dependent translation requires the host’s translation initiation factors and IRES-associated trans-acting factors (ITAFs). We reported recently that mRNA decay factor AUF1 is a negative-acting ITAF that binds IRES stem-loop II. We also reported that the small RNA-processing enzyme Dicer produces at least four small RNAs (vsRNAs) from the EV71 IRES. One of these, vsRNA1, derived from IRES stem-loop II, reduces IRES activity and virus replication. Since its mechanism of action is unknown, we hypothesized that it might control association of ITAFs with the IRES. Here, we identified the mRNA stability factor HuR and the RISC subunit Argonaute 2 (Ago2) as two ITAFs that bind stem-loop II. In contrast to AUF1, HuR and Ago2 promote EV71 IRES activity and virus replication. In vitro RNA-binding assays revealed that vsRNA1 can alter association of Ago2, HuR, and AUF1 with stem-loop II. This presents a possible mechanism by which vsRNA1 could control viral translation and replication.  相似文献   

19.
Most eukaryotic initiation factors (eIFs) are required for internal translation initiation at the internal ribosome entry site (IRES) of picornaviruses. eIF4B is incorporated into ribosomal 48S initiation complexes with the IRES RNA of foot-and-mouth disease virus (FMDV). In contrast to the weak interaction of eIF4B with capped cellular mRNAs and its release upon entry of the ribosomal 60S subunit, eIF4B remains tightly associated with the FMDV IRES during formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. The interaction of eIF4B with the IRES in 48S and 80S complexes is independent of the location of the initiator AUG and thus independent of the mechanism by which the small ribosomal subunit is placed at the actual start codon, either by direct internal ribosomal entry or by scanning. eIF4B does not greatly rearrange its binding to the IRES upon entry of the ribosomal subunits, and the interaction of eIF4B with the IRES is independent of the polypyrimidine tract-binding protein, which enhances FMDV translation.  相似文献   

20.
Rhopalosiphum padi virus (RhPV) is an insect virus of the Dicistroviridae family. Recently, the 579-nucleotide-long 5' untranslated region (UTR) of RhPV has been shown to contain an internal ribosome entry site (IRES) that functions efficiently in mammalian, plant, and insect in vitro translation systems. Here, the mechanism of action of the RhPV IRES has been characterized by reconstitution of mammalian 48S initiation complexes on the IRES from purified components combined with the toeprint assay. There is an absolute requirement for the initiation factors eIF2 and eIF3 and the scanning factor eIF1 to form 48S complexes on the IRES. In addition, eIF1A, eIF4F (or the C-terminal fragment of eIF4G), and eIF4A strongly stimulated the assembly of this complex, whereas eIF4B had no effect. Although the eIF4-dependent pathway is dominant in the RhPV IRES-directed cell-free translation, omission of either eIF4G or eIF4A or both still allowed the assembly of 48S complexes from purified components with approximately 23% of maximum efficiency. Deletions of up to 100 nucleotides throughout the 5'-UTR sequence produced at most a marginal effect on the IRES activity, suggesting the absence of specific binding sites for initiation factors. Only deletion of the U-rich unstructured 380-nucleotide region proximal to the initiation codon resulted in a complete loss of the IRES activity. We suggest that the single-stranded nature of the RhPV IRES accounts for its strong but less selective potential to bind key mRNA recruiting components of the translation initiation apparatus from diverse origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号