首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction between angiotensin II (Ang II) and the fragment peptide 300-320 (fCT300-320) of the rat angiotensin II receptor AT1a was demonstrated by relaxation measurements, NOE effects, chemical shift variations, and CD measurements. The correlation times modulating dipolar interactions for the bound and free forms of Ang II were estimated by the ratio of the nonselective and single-selective longitudinal relaxation rates. The intermolecular NOEs observed in NOESY spectra between HN protons of 9Lys(fCT) and 6His(ang), 10Phe(fCT) and 8Phe(ang), HN proton of 3Tyr(fCT) and Halpha of 4Tyr(ang), 5Phe(fCT)Hdelta and Halpha of 4Tyr(ang) indicated that Ang II aromatic residues are directly involved in the interaction, as also verified by relaxation data. Some fCT300-320 backbone features were inferred by the CSI method and CD experiments revealing that the presence of Ang II enhances the existential probability of helical conformations in the fCT fragment. Restrained molecular dynamics using the simulated annealing protocol was performed with intermolecular NOEs as constraints, imposing an alpha-helix backbone structure to fCT300-320 fragment. In the built model, one strongly preferred interaction was found that allows intermolecular stacking between aromatic rings and forces the peptide to wrap around the 6Leu side chain of the receptor fragment.  相似文献   

2.
Lee C  Hwang SA  Jang SH  Chung HS  Bhat MB  Karnik SS 《FEBS letters》2007,581(13):2517-2522
The angiotensin II type I (AT(1)) receptor mediates regulation of blood pressure and water-electrolyte balance by Ang II. Substitution of Gly for Asn(111) of the AT(1) receptor constitutively activates the receptor leading to Gq-coupled IP(3) production independent of Ang II binding. The Ang II-activated conformation of the AT1(N111G) receptor was proposed to be similar to that of the wild-type AT(1) receptor, although, various aspects of the Ang II-induced conformation of this constitutively active mutant receptor have not been systematically studied. Here, we provide evidence that the conformation of the active state of the wild-type and the constitutively active AT(1) receptors are different. Upon Ang II binding an activated conformation of the wild-type AT(1) receptor activates G protein and recruits beta-arrestin. In contrast, the agonist-bound AT1(N111G) mutant receptor preferentially couples to Gq and is inadequate in beta-arrestin recruitment.  相似文献   

3.
The endogenous angiotensin II (Ang II) and the synthetic AT(2) selective agonist 4-aminoPhe(6)-Ang II respond very differently to identical cyclizations. Cyclizations of Ang II by thioacetalization, involving the 3 and 5 amino acid residue side chains, provided ligands with almost equipotent binding affinities to Ang II at the AT(2) receptor. In contrast, the same cyclization procedures applied on the AT(2) selective 4-aminoPhe(6)-Ang II delivered significantly less potent AT(2) receptor ligands, although the AT(2)/AT(1) selectivity was still very high. The fact that different structure-activity relationships are observed after imposing conformational restrictions on Ang II and 4-aminoPhe(6)-Ang II, respectively, suggests that the peptides, despite large similarities might adopt quite different backbone conformations when binding to the AT(2) receptor.  相似文献   

4.
The octapeptide hormone, angiotensin II (Ang II), exerts its major physiological effects by activating AT(1) receptors. In vivo Ang II is degraded to bioactive peptides, including Ang III (angiotensin-(2-8)) and Ang IV (angiotensin-(3-8)). These peptides stimulate inositol phosphate generation in human AT(1) receptor expressing CHO-K1 cells, but the potency of Ang IV is very low. Substitution of Asn(111) with glycine, which is known to cause constitutive receptor activation by disrupting its interaction with the seventh transmembrane helix (TM VII), selectively increased the potency of Ang IV (900-fold) and angiotensin-(4-8), and leads to partial agonism of angiotensin-(5-8). Consistent with the need for the interaction between Arg(2) of Ang II and Ang III with Asp(281), substitution of this residue with alanine (D281A) decreased the peptide's potency without affecting that of Ang IV. All effects of the D281A mutation were superseded by the N111G mutation. The increased affinity of Ang IV to the N111G mutant was also demonstrated by binding studies. A model is proposed in which the Arg(2)-Asp(281) interaction causes a conformational change in TM VII of the receptor, which, similar to the N111G mutation, eliminates the constraining intramolecular interaction between Asn(111) and TM VII. The receptor adopts a more relaxed conformation, allowing the binding of the C-terminal five residues of Ang II that switches this "preactivated" receptor into the fully active conformation.  相似文献   

5.
The angiotensin II type 1 (AT(1)) receptor is a G protein-coupled receptor that has a crucial role in the development of load-induced cardiac hypertrophy. Here, we show that cell stretch leads to activation of the AT(1) receptor, which undergoes an anticlockwise rotation and a shift of transmembrane (TM) 7 into the ligand-binding pocket. As an inverse agonist, candesartan suppressed the stretch-induced helical movement of TM7 through the bindings of the carboxyl group of candesartan to the specific residues of the receptor. A molecular model proposes that the tight binding of candesartan to the AT(1) receptor stabilizes the receptor in the inactive conformation, preventing its shift to the active conformation. Our results show that the AT(1) receptor undergoes a conformational switch that couples mechanical stress-induced activation and inverse agonist-induced inactivation.  相似文献   

6.
Small differences in the chemical structures of ligands can be responsible for agonism, neutral antagonism or inverse agonism toward a G-protein-coupled receptor (GPCR). Although each ligand may stabilize the receptor conformation in a different way, little is known about the precise conformational differences. We synthesized the angiotensin II type 1 receptor blocker (ARB) olmesartan, R239470 and R794847, which induced inverse agonism, antagonism and agonism, respectively, and then investigated the ligand-specific changes in the receptor conformation with respect to stabilization around transmembrane (TM)3. The results of substituted cysteine accessibility mapping studies support the novel concept that ligand-induced changes in the conformation of TM3 play a role in stabilizing GPCR. Although the agonist-, neutral antagonist and inverse agonist-binding sites in the AT(1) receptor are similar, each ligand induced specific conformational changes in TM3. In addition, all of the experimental data were obtained with functional receptors in a native membrane environment (in situ).  相似文献   

7.
The topology of the second extracellular loop (ECL2) and its interaction with ligands is unique in each G protein-coupled receptor. When the orthosteric ligand pocket located in the transmembrane (TM) domain is occupied, ligand-specific conformational changes occur in the ECL2. In more than 90% of G protein-coupled receptors, ECL2 is tethered to the third TM helix via a disulfide bond. Therefore, understanding the extent to which the TM domain and ECL2 conformations are coupled is useful. To investigate this, we examined conformational changes in ECL2 of the angiotensin II type 1 receptor (AT1R) by introducing mutations in distant sites that alter the activation state equilibrium of the AT1R. Differential accessibility of reporter cysteines introduced at four conformation-sensitive sites in ECL2 of these mutants was measured. Binding of the agonist angiotensin II (AngII) and inverse agonist losartan in wild-type AT1R changed the accessibility of reporter cysteines, and the pattern was consistent with ligand-specific “lid” conformations of ECL2. Without agonist stimulation, the ECL2 in the gain of function mutant N111G assumed a lid conformation similar to AngII-bound wild-type AT1R. In the presence of inverse agonists, the conformation of ECL2 in the N111G mutant was similar to the inactive state of wild-type AT1R. In contrast, AngII did not induce a lid conformation in ECL2 in the loss of function D281A mutant, which is consistent with the reduced AngII binding affinity in this mutant. However, a lid conformation was induced by [Sar1,Gln2,Ile8] AngII, a specific analog that binds to the D281A mutant with better affinity than AngII. These results provide evidence for the emerging paradigm of domain coupling facilitated by long range interactions at distant sites on the same receptor.  相似文献   

8.
N-(2-Mercaptoethyl)glycine [NMGly] was incorporated into the 3 and 5 positions of angiotensin II and oxidized to give the corresponding cyclized disulfide c[NMGly(3,5)]Ang II. The binding affinity to the angiotensin II receptor (AT(1)) of this conformationally constrained analogue, which is related to the potent Ang II agonist c[Hcy(3,5)]Ang II, was examined. The analogue had no affinity to the AT(1) receptor. Theoretical conformational analysis was performed to compare the conformational characteristics of model compounds of c[Hcy(3,5)]Ang II and the frame shifted analogue c[NMGly(3,5)]Ang II in an attempt to explain the lack of affinity.  相似文献   

9.
Despite advances characterizing mammalian angiotensin receptors, the phylogeny of fish angiotensin receptors remains unclear. Three aspects of receptor function: (1) the nature of the ligand; (2) the second messenger system activated by it; and (3) the pharmacological profile of specific antagonists, are examined to provide insight into the fish receptor. (1) The octapeptide sequences of fish and mammalian angiotensin II (ANG II) are nearly homologous, differing only at the first and fifth residues. Both peptides are almost equally efficacious and equipotent in heterologous systems and both contain key agonist switches Tyr(4) and Phe(8) necessary to activate mammalian AT(1)-type receptors. (2) ANG II increases inositol trisphosphate production, and elevates intracellular calcium in fish tissues consistent with activation of the AT(1) receptor. (3) However, the specific mammalian sartan-type AT(1) antagonists, e.g. losartan, produce inconsistent results in fish often acting as partial agonists, or inhibiting only at elevated concentrations. Because sartans and ANG II act at distinct sites on the AT(1) receptor, we propose that the teleost receptor is an AT(1)-type receptor that is fairly well conserved with respect to both the ANG binding site and coupling to the second messenger system, whereas the sartan binding site has been poorly conserved. The evidence for non-AT(1) type ANG II receptors in teleosts is limited. Mammalian AT(2) receptor antagonists are generally ineffective but may block at elevated, non-specific doses. Truncated ANG II fragments, ANG III and ANG IV, are often less potent than ANG II, however, their receptors have not been examined. Preliminary studies in trout indicate that angiotensin 1-7 may have a mild vasodilatory effect; additional work is needed to determine if non-AT(1)-type receptors are involved.  相似文献   

10.
G-protein activation by G-protein coupled receptors (GPCRs) is accomplished through proper interaction with the cytoplasmic loops rather than through sequence-specific interactions. However, the mechanism by which a specific G-protein is selected by a GPCR is not known. In the current model of GPCR activation, agonist binding modulates helix-helix interactions, which is necessary for fully determining G-protein specificity and stimulation of GDP/GTP exchange. In this study, we report that a single-residue deletion in transmembrane helix IV leads the angiotensin II type 1 (AT(1)) receptor chimera CR17 to retain GTP-sensitive high affinity for the agonist angiotensin II but results in complete inactivation of intracellular inositol phosphate production. The agonist dissociation profile of CR17 in the presence of guanosine 5'-3-O-(thio)triphosphate suggests that the activation-induced conformational changes of the chimeric receptor itself remain intact. Insertion of an alanine at position 149 (CR17triangle down149A) in this chimera rescued the inactive phenotype, restoring intracellular inositol phosphate production by the chimera. This finding suggests that in the wild-type AT(1) receptor the orientation of transmembrane helix IV-residues following Cys(149) is a key determinant for effectively distinguishing among various structurally similar G-proteins. The results emphasize that the contacts within the membrane-embedded portion of transmembrane helix IV in the AT(1) receptor is important for specific G-protein selection.  相似文献   

11.
Hafizi S  Chester AH  Yacoub MH 《Peptides》2004,25(6):1031-1033
The vasoactive peptide angiotensin II (Ang II) has been implicated as a mediator of myocardial fibrosis. We carried out a comparative investigation of the effects of Ang II and its precursor Ang I on collagen metabolism and proliferation in cultured human cardiac fibroblasts. Cardiac fibroblasts responded to both Ang I and Ang II with concentration-dependent increases in collagen synthesis but no proliferation. The stimulatory effect of Ang II was abolished by the AT(1) receptor antagonist losartan but not the AT(2) receptor antagonist PD123319. The response to Ang I was not affected by either antagonist, nor by the angiotensin-converting enzyme (ACE) inhibitor captopril. In conclusion, Both Ang I and Ang II stimulate collagen synthesis of human cardiac fibroblasts, the effect of Ang II occurring via the AT(1) receptor whilst Ang I appears to exert a direct effect through non-Ang II-dependent mechanisms. These results suggest distinct roles for angiotensin peptides in the development of cardiac fibrosis.  相似文献   

12.
J M Matsoukas  G Bigam  N Zhou  G J Moore 《Peptides》1990,11(2):359-366
The conformational properties of the octapeptide [Sar1]ANG II in dimethylsulfoxide-d6 were investigated by rotating frame nuclear Overhauser effect spectroscopy (ROESY). Interresidue ROESY interactions were observed between Tyr ortho and Phe ring protons, between Phe ring and Pro C gamma protons, and also between His C alpha and Pro C delta protons. A weak connectivity was also observed between the Sar N-CH3 protons and a Tyr ortho proton. Intraresidue interactions between alpha and beta protons in Tyr, His and Phe indicated restricted rotation for the side-chains of the three aromatic residues. These findings suggest that [Sar1]ANG II takes up a folded conformation in DMSO in which the three aromatic rings form a cluster. Connectivities between the His C alpha proton and the two Pro C delta protons illustrated a preferred conformation for angiotensin II in DMSO in which the His-Pro bond exists as the trans isomer. The NMR spectroscopic evidence is consistent with the presence of a Tyr charge relay system in the biologically active conformation of angiotensin II and with the postulated role of the Tyr hydroxyl group in angiotensin II for receptor activation.  相似文献   

13.
The renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS) each encompasses a large number of molecules, with several participating in both systems. The RAS generates a family of bioactive angiotensin peptides with varying biological activities. These include angiotensin-(1-8) (Ang II), angiotensin-(2-8) (Ang III), angiotensin-(3-8) (Ang IV), and angiotensin-(1-7) [Ang-(1-7)]. Ang II and Ang III act on type 1 (AT(1)) and type 2 (AT(2)) angiotensin receptors, whereas, Ang IV and Ang-(1-7) act on their own receptors. The KKS also generates a family of bioactive peptides with varying biological activities. These include hydroxylated and non-hydroxylated bradykinin and kallidin peptides and their carboxypeptidase metabolites des-Arg(9)-bradykinin and des-Arg(10)-kallidin. Whereas bradykinin and kallidin act mainly via the type 2 bradykinin (B(2)) receptor, des-Arg(9)-bradykinin and des-Arg(10)-kallidin act mainly via the type 1 bradykinin (B(1)) receptor. The AT(1) receptor forms heterodimers with the AT(2) and B(2) receptors and there is cross talk between the AT(1) and epidermal growth factor receptors. The B(2) receptor also interacts with angiotensin converting enzyme and nitric oxide synthase. Both angiotensin and kinin peptides are metabolised by many different peptidases that are important determinants of the activities of the RAS and KKS, and several of which participate in both systems.  相似文献   

14.
Identification of two subtypes in the rat type I angiotensin II receptor.   总被引:10,自引:0,他引:10  
N Iwai  T Inagami 《FEBS letters》1992,298(2-3):257-260
A rat adrenal cDNA library was screened by colony hybridization using a rat cDNA fragment of type I angiotensin II receptor (AT1A) previously isolated from the kidney. Two cDNA clones were identified, designated as AT1B, to have a nucleotide sequence highly homologous to and yet distinct from AT1A. The amino acid sequence of AT1B consists of 359 amino acid residues and has 96% identity with AT1A. No conspicuous difference in the ligand binding characteristics was observed between AT1A and AT1B. The mRNA for AT1B was expressed in many tissues as is the case with AT1A, and most abundantly expressed in the adrenal glands in the Sprague-Dawley rats. The existence of two subtypes in the rat type I angiotensin II receptor might explain the diverse actions of angiotensin II in various tissues.  相似文献   

15.
Angiotensin receptors: form and function and distribution   总被引:9,自引:0,他引:9  
The peptide hormone, angiotensin II, acts primarily via type I (AT(1)) and type II (AT(2)) angiotensin receptors. Proteolytic fragments of angiotensin II also have biological activity via these and other receptors, with actions that may mimic or antagonise angiotensin II. Most notably, a high affinity-binding site for angiotensin IV (the Val(3)-Phe(8) fragment of angiotensin II) has recently been identified as the insulin-regulated aminopeptidase (IRAP). While AT(1) and AT(2) receptors are seven transmembrane-spanning, G protein-coupled receptors with some well-established features of relevance to health and disease, the existence of separate receptor systems for angiotensin fragments offers exciting possibilities for new therapeutics to target the diverse actions of the angiotensin peptides.  相似文献   

16.
Members of the G-protein-coupled receptor superfamily (GPCRs) undergo homo- and/or hetero-oligomerization to induce cell signaling. Although some of these show constitutive activation, it is not clear how such GPCRs undergo homo-oligomerization with transmembrane helix movement. We previously reported that angiotensin II (Ang II) type 2 (AT(2)) receptor, a GPCR, showed constitutive activation and induced apoptosis independent of its ligand, Ang II. In the present study, we analyzed the translocation and oligomerization of the AT(2) receptor with transmembrane movement when the receptor induces cell signaling. Constitutively active homo-oligomerization, which was due to disulfide bonding between Cys(35) in one AT(2) receptor and Cys(290) in another AT(2) receptor, was localized in the cell membrane without Ang II stimulation and induced apoptosis without changes in receptor conformation. These results provide the direct evidence that the constitutively active homo-oligomeric GPCRs by intermolecular interaction in two extracellular loops is translocated to the cell membrane and induces cell signaling independent of receptor conformation and ligand stimulation.  相似文献   

17.
A mechanistic understanding of the insurmountable antagonism of the angiotensin II type 1 (AT(1)) receptor could be fundamental in the quest for discovery and improvement of drugs. Candesartan and EXP3174 are competitive, reversible insurmountable antagonists of the AT(1) receptor. They contain di-acidic substitutions, whereas the surmountable antagonist, losartan, contains only one acidic group. We tested the hypothesis that these two classes of ligands interact with the AT(1) receptor through similar but not identical bonds and that the differences in the acid-base group contacts are critical for insurmountable antagonism. By pharmacological characterization of site-directed AT(1) receptor mutants expressed in COS1 cells we show that specific interactions with Gln(257) in transmembrane 6 distinguishes insurmountable antagonists and that abolishing these interactions transforms insurmountable to surmountable antagonism. In the Q257A mutant, the dissociation rate of [(3)H]candesartan is 2.8-fold more than the rate observed with wild type, and the association rate was reduced 4-fold lower than the wild type. The pattern of antagonism of angiotensin II concentration-response in the Q257A mutant pretreated with EXP3174 and candesartan is surmountable. We propose that leaning ability of insurmountable antagonists on Gln(257) in the wild-type receptor is the basis of an antagonist-mediated conformational transition, which is responsible for both slow dissociation and inhibition of maximal IP response.  相似文献   

18.
The present study investigates the importance of the amino acid side chains in the octapeptide angiotensin II (Ang II) for binding to the AT2 receptor. A Gly scan was performed where each amino acid in Ang II was substituted one-by-one with glycine. The resulting set of peptides was tested for affinity to the AT2 receptor (porcine myometrial membranes). For a comparison, the peptides were also tested for affinity to the AT1 receptor (rat liver membranes). Only the substitution of Arg2 reduced affinity to the AT2 receptor considerably (92-fold when compared with Ang II). For the other Gly-substituted analogues the affinity to the AT2 receptor was only moderately affected. To further investigate the role of the Arg2 side chain for receptor binding, we synthesized some N-terminally modified Ang II analogues. According to these studies a positive charge in the N-terminal end of angiotensin III [Ang II (2-8)] is not required for high AT2 receptor affinity but seems to be more important in Ang II. With respect to the AT1 receptor, [Gly2]Ang II and [Gly8]Ang II lacked binding affinity (Ki > 10 microM). Replacement of the Val3 or Ile5 residues with Gly produced only a slight decrease in affinity. Interestingly, substitution of Tyr4 or His6, which are known to be very important for AT1 receptor binding, resulted in only 48 and 14 times reduction in affinity, respectively.  相似文献   

19.
Drugs such as tamoxifen, which act at the estrogen receptor (ER), have very different in vitro and in vivo effects from those of the native hormone. Previous research has established that different ligands induce distinct conformational changes in the ER, thus affecting the interactions of the receptor with cell-specific co-activating or co-repressing proteins (cofactors) and estrogen response elements (EREs), thus potentially driving differing biological effects. Affinity-selected peptides have been used to probe the conformational changes that occur within the ER upon binding various ligands. In this study, the authors characterize the ability of several peptides to be recruited to liganded ER under cellular conditions. Approximating ER conformation via recruitment of this peptide to the ER is concluded to be a better predictor of the agonist nature of an ER ligand under these different cellular contexts than is a canonical cotransfection transactivation assay.  相似文献   

20.
In this study we examined the conformation and side chain environments of angiotensins I, II, III, and [Sar1-Ile5-Ala8]angiotensin II using laser Raman spectroscopy. The positions of the amide I bands for all four peptides were found between 1664 and 1673 cm?1. D2O exchange studies confirmed the positions of the amide I and amide III bands. The positions of the amide I bands for all the angiotensins were found at approximately 1665 cm?1 and the amide III bands were all located between 1265 and 1278 cm?1. From the positions and intensities of the amide I and III bands we concluded that all peptides share the same overall conformation consisting of β-turn structure. Spectral analysis indicated that although the spectra for all the peptides were qualitatively identical there was evidence that the angiotensin conformations were more flexible in the aqueous phase than the solid phase. Examination of the 850830 cm?1 tyrosine doublet suggested that the tyrosine residue in the peptides is exposed to the solvent environment and becomes more exposed as the peptide length is decreased. Therefore, there are some localized conformational differences among the angiotensins. The conformational data yielded by this study leads us to conclude that the various biological properties ascribed to the angiotensins are not due to different conformations of the peptides. The biological differences could perhaps be attributed to localized interactions of the individual amino acid residues with themselves and with the hormone receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号