首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prontosil, a carbonic anhydrase inhibitor of orange-red colour, is used to visualize carbonic anhydrase bands during isoelectric focusing in polyacrylamide gels. 5–60 ng of the sulfonamide Prontosil are added to the 100–200 μl samples before application to the gels. Bound Prontosil moves into the gel together with carbonic anhydrase and stains the enzyme bands formed there, while unbound Prontosil remains on top of the gels. The method is specific, no proteins other than carbonic anhydrase were observed to be stained, and it requires no special equippment. It was applied to chloroform/ethanol extracts of erythrolysates and while muscle homogenates from rabbits. Densitometric evaluation of the Prontosil-stained bands obtained with these extracts showed that rabbit red cells contain roughly equla amounts of carbonic anhydrase isoenzymes B and C while in rabbit white skeletal muscle isoenzyme C is predominant and little B enzyme occurs. These results confirm previous findings obtained by affinity chromatography of erythrolysates and muscle homogenates.  相似文献   

2.
Membrane-associated carbonic anhydrase purified from bovine lung   总被引:18,自引:0,他引:18  
We found carbonic anhydrase activity associated with particulate fractions of homogenates of rat, rabbit, human, and bovine lungs. These membrane-associated carbonic anhydrases were remarkably stable in solutions containing sodium dodecyl sulfate (SDS). The bovine enzyme was dissolved with SDS and purified by affinity chromatography and gel filtration. The purified enzyme contains glucosamine, galactose, and sialic acid; it is at least 20% carbohydrate. The apparent molecular weight by SDS-polyacrylamide gel electrophoresis (52,000) may be higher than the actual molecular weight due to the presence of carbohydrate. The enzyme contains cystine, an amino acid that is absent in bovine erythrocyte carbonic anhydrase. Dithiothreitol greatly accelerated the rate of inactivation of the membrane-associated enzyme in SDS, so disulfide bonds appear to stabilize this enzyme. The specific CO2-hydrating activity was about half that of the erythrocyte enzyme. Acetazolamide inhibits the membrane-associated enzyme (Ki = 10 nM) nearly as well as the erythrocyte enzyme (Ki = 3 nM). Antibody to bovine erythrocyte carbonic anhydrase did not inhibit the membrane-associated enzyme. Other investigators have accumulated a good deal of evidence for carbonic anhydrase on the luminal surface of pulmonary capillaries. The enzyme described here appears to be a new isozyme whose properties are consistent with such a localization.  相似文献   

3.
Procedures for the purification of bovine muscle carbonic anhydrase (isoenzyme III) are described. The purified enzyme has a molecular weight near 29,000 and contains one Zn2+ ion per molecule. The sedimentation coefficient, s(0)20,w, is 2.8 X 10(-13) s, the isoelectric pH is 8.5, and A280(0.1%) = 2.07 cm-1. The CO2 hydration activity, expressed as kcat/Km, is about 1.5% of that of human isoenzyme I (or B) and about 0.3% of that of human isoenzyme II (or C) at pH 8 and 25 degrees C. The activity is nearly independent of pH between pH 6.0 and 8.6. The muscle enzyme is weakly inhibited by the sulfonamide inhibitor, acetazolamide, whereas some anions, particularly sulfide and cyanate, are efficient inhibitors. Bovine carbonic anhydrase III contains five thiol groups, two of which react readily with Ellman's reagent without effect on the catalytic activity. A reinvestigation of the amino acid sequences of cysteine-containing tryptic peptides has shown that cysteine residues occur at sequence positions 66, 183, 188, 203, and 206.  相似文献   

4.
1. A partial primary structure (197 residues) of carbonic anhydrase from tiger shark (Galeocerdo cuvieri) erythrocytes has been determined. 2. The amino acid sequence of the enzyme is identical to those of human cytoplasmic carbonic anhydrases (CA I-III) by as much as 52-60%. 3. It is shown that tiger shark CA most closely resembles the CA II isoenzyme of amniotes. 4. Isoelectric focusing and inhibition studies on carbonic anhydrase from dogfish (Squalus acanthias) blood and muscle indicate the presence of the same isoenzyme in shark blood and muscle.  相似文献   

5.
The presence of carbonic anhydrase activity was demonstrated in guinea pig skeletal muscle mitochondria purified by Percoll gradient centrifugation such that contamination by sarcoplasmic reticulum vesicles was less than 5%. Assay of purified heavy sarcoplasmic reticulum vesicles for carbonic anhydrase activity showed these to have somewhat less activity than the mitochondria, so that any contribution by sarcoplasmic reticulum vesicles to mitochondrial activity would be negligible. In agreement with this observation, rabbit skeletal muscle mitochondria prepared by the Percoll method had no detectable activity. Assay of the guinea pig muscle mitochondrial enzyme activity in the presence of Triton X-100 showed a sixfold greater activity than in its absence, indicating a matrix location for the carbonic anhydrase. The enzyme is highly sensitive to the sulfonamide inhibitor ethoxzolamide, with Ki = 8.7 nM. The activation energy obtained from the rate constant for CO2 hydration, kenz with units (mg/ml)-1 s-1, over the range 4 to 37 degrees C was 12.8 kcal/mol. These properties are those expected for a carbonic anhydrase of the CA II class of isozymes, rather than for CA I, CA III, and the liver mitochondrial enzyme CA V.  相似文献   

6.
Pig muscle carbonic anhydrase III (carbonate hydro-lyase, EC 4.2.1.1) has been isolated and purified to homogeneity with chromatographic techniques. It has been found to be a 30 kDa protein displaying the same three activities (CO2 hydratase, acetate esterase, p-nitrophenyl phosphatase) previously described for the rabbit muscle isoenzyme, including the phosphatase activity not seen in the erythrocyte isoenzymes. The turnover numbers of the three activities are of the same order of magnitude as previously reported for rabbit muscle carbonic anhydrase III. Km and Vmax for the pig muscle CO2 hydratase activity were found to be 83 mM and 6000 s-1, respectively. The extinction coefficient at 280 nm (1 cm light path) is 22.2 for a 1% solution. Five half-cystine residues determined by performic acid oxidation are free for reaction with p-mercuribenzoate but only four are accessible to titration with dithiobisnitrobenzene. The amino acid composition of the pig muscle isoenzyme III has a high level of homology compared with that of rabbit and bovine muscle carbonic anhydrases III.  相似文献   

7.
Radioimmunoassay of carbonic anhydrase III in rat tissues.   总被引:3,自引:2,他引:1       下载免费PDF全文
A specific and sensitive radioimmunoassay for the rat carbonic anhydrase III isoenzyme was developed. High concentrations of carbonic anhydrase III were detected in soleus muscle and male liver. Female liver and other skeletal muscles contained significantly lower concentrations, and only trace amounts were found in heart, prostate, kidney, brain, plasma, urine and, possibly, erythrocytes.  相似文献   

8.
Rat liver and rabbit skeletal muscle were studied by Hansson's method for histochemical demonstration of carbonic anhydrase activity. In histochemical model experiments purified male rat liver carbonic anhydrase was much more resistant to acetazolamide than rat erythrocyte carbonic anhydrase. Male rat liver slices showed cytoplasmic staining, which was about 1000 times more resistant to acetazolamide and ethoxzolamide than that of female rat liver or erthyrocytes of either sex. Rabbit skeletal muscle slices showed staining at the sarcolemma of all fibers, whereas the staining of the sarcoplasm varied. The walls of capillaries situated within the muscle bundles were intensely stained. The sarcoplasmic staining of a certain number of fibers was at least 1000 times less sensitive to acetazolamide than the other staining. These findings, which are in good agreement with biochemical data, show that the sulfonamides inhibit histochemical staining in a specific way. This is strong evidence for the specificity of the method.  相似文献   

9.
1. Two forms of the zinc-containing enzyme carbonic anhydrase (EC 4.2.1.1) were isolated from rabbit erythrocytes and two forms from rabbit uterine tissue (endometrium) in the progestational stage of pregnancy (days 6-8 of gestation). Separation of the isoenzymes was achieved by ion-exchange chromatography, preparative polyacrylamide-gel electrophoresis and isoelectric focusing. A comparison was made of the general properties and kinetic behaviour of the purified isoenzymes. 2. Although indistinguishable in terms of molecular weight and zinc content the isoenzymes were very different as catalysts of the hydration of carbon dioxide. The two erythrocyte isoenzymes, found in almost equal amounts, differed more than 100-fold in specific activity. Of the two isoenzymes prepared from either endometrial or entire uterine homogenates one was kinetically indistinguishable from the erythrocyte high-activity form, whereas the other, also possessing high activity, was found only in the endometrial or uterine tissue. Present evidence suggests that the former isoenzyme originated from residual blood contaminating the tissue homogenates, and that a marked rise in the content of the latter isoenzyme accounts for the increase in rabbit endometrial carbonic anhydrase activity that previously has been observed in early pregnancy. 3. Minor forms of the erythrocyte isoenzymes, having a characteristic quantitative and electrophoretic relationship to one another, were occasionally produced during purification. 4. The actions were investigated of the inhibitors acetazolamide (5-acetamido-3,4-diazole-1-thia-2-sulphonamide), 1,1-dimethylaminonaphthalene-5-sulphonamide and ethoxyzolamide (6-ethoxybenzothiazole-2-sulphonamide) on the hydration of carbon dioxide and the hydrolysis of p-nitrophenyl acetate catalysed by the isoenzymes. 5. The low-activity erythrocyte isoenzyme was superior to the high-activity form as a catalyst of beta-naphthyl acetate hydrolysis.  相似文献   

10.
Assay of carbonic anhydrase by titration at constant pH   总被引:3,自引:3,他引:0       下载免费PDF全文
1. A method is described for measuring accurately the initial velocity of the hydration reaction catalysed by the enzyme carbonic anhydrase (EC 4.2.1.1); the method depends on the titration of H(+) ions at constant pH. 2. Human erythrocyte carbonic anhydrase, isoenzyme C, was used to illustrate the method. Under the experimental conditions employed (0 degrees , pH7.0, in the presence of 45mm-sodium chloride and 5mm-sodium phosphate) isoenzyme C obeyed the Michaelis equation over the range of substrate concentration 1-16mm-carbon dioxide. The kinetic constants found were: K(m)=8.2mm; V/[E(0)]=5.0x10(4) sec.(-1).  相似文献   

11.
Methods for immunohistochemical localization of human carbonic anhydrase isoenzyme C (HCA C) with indirect fluorescent antibody and immunoperoxidase techniques are described. Both methods revealed large amounts of this "high activity" isoenzyme in the mucosae of human stomach and appendix. With the indirect immunofluorescent method the presence of the enzyme in human erythrocyte cytoplasm was also demonstrated. Correlations of present findings with those obtained with the traditional histochemical methods for demonstration of carbonic anhydrase activity are discussed.  相似文献   

12.
Sarcolemmal carbonic anhydrase in red and white rabbit skeletal muscle   总被引:2,自引:0,他引:2  
Sarcolemmal vesicles of white and red skeletal muscles of the rabbit were prepared by consecutive density gradient centrifugations in sucrose and dextran according to Seiler and Fleischer (1982, J. Biol. Chem. 257, 13,862-13,871). White and red muscle membrane fractions enriched in sarcolemma were characterized by high ouabain-sensitive Na+, K(+)-ATPase, by high Mg2(+)-ATPase activity, and by a high cholesterol content. Ca2(+)-ATPase activity, a marker enzyme for sarcoplasmic reticulum, was not detectable in the highly purified white and red muscle sarcolemmal fractions. White and red muscle sarcolemmal fractions exhibited no significant differences with regard to Na+, K(+)-ATPase, Mg2(+)-ATPase, and cholesterol. Specific activity of carbonic anhydrase in white muscle sarcolemmal fractions was 38 U.ml/mg and was 17.6 U.ml/mg in red muscle sarcolemma. Inhibition properties of sarcolemmal carbonic anhydrase were analyzed for acetazolamide, chlorzolamide, and cyanate. White muscle sarcolemmal carbonic anhydrase is characterized by inhibition constants, KI, toward acetazolamide of 4.6 X 10(-8) M, toward chlorzolamide of 0.75 X 10(-8) M, and toward cyanate of 1.3 X 10(-4) M. Red muscle sarcolemmal carbonic anhydrase is characterized by KI values toward acetazolamide of 8.1 X 10(-8) M, toward chlorzolamide of 6.3 X 10(-8) M, and toward cyanate of 0.81 X 10(-4) M. In contrast to the high specific carbonic anhydrase activities in sarcolemma, carbonic anhydrase activity in sarcoplasmic reticulum from white muscle varied between values of only 0.7 and 3.3 U.ml/mg. Carbonic anhydrase of red muscle sarcoplasmic reticulum ranged from 2.4 to 3.7 U.ml/mg.  相似文献   

13.
Approximately half the carbonic anhydrase activity of sheep parotid-gland homogenate is derived from a high-Mr protein [Fernley, Wright & Coghlan (1979) FEBS Lett. 105, 299-302]. This enzyme has now been purified to homogeneity, and its properties were compared with those of the well-characterized sheep carbonic anhydrase II. The protein has an apparent Mr of 540,000 as measured by gel filtration under non-denaturing conditions and an apparent subunit Mr of 45,000 as measured by SDS/polyacrylamide-gel electrophoresis. After deglycosylation with the enzyme N-glycanase the protein migrates with an apparent Mr of 36,000 on SDS/polyacrylamide-gel electrophoresis. The CO2-hydrating activity was 340 units/mg compared with 488 units/mg for sheep carbonic anhydrase II measured under identical conditions. This enzyme does not, however, hydrolyse p-nitrophenyl acetate. The enzyme contains 0.8 g-atom of zinc/mol of protein subunit. The peptide maps of the two carbonic anhydrases differ significantly from one another, indicating they are not related closely structurally. Unlike the carbonic anhydrase II isoenzyme, which has a blocked N-terminus, the high-Mr enzyme has a free glycine residue at its N-terminus.  相似文献   

14.
1. High activity (CA C) and low activity (CA B) carbonic anhydrase isoenzymes have been purified from turtle erythrocytes. 2. The two isoenzymes differed in CO2 hydration specific activity by 36-fold. 3. The low activity isoenzyme contained one half-cystine residue, whereas the high activity isoenzyme contained four half-cystines and required a reducing environment to maintain activity. Both isoenzymes contained zinc. 4. Molecular weights of 28,500 and 30,400 daltons were established for the low and high activity isoenzymes respectively. 5. Both isoenzymes were inhibited by acetazolamide, but only the high activity isoenzyme was inhibited by parachloromercuribenzoate. 6. The low activity isoenzyme was present in the erythrocytes at about 8-10 times the concentration of the high activity isoenzyme. 7. The high activity isoenzyme cross-reacted with antibodies prepared against pure chicken carbonic anhydrase C.  相似文献   

15.
Basic muscle protein,a third genetic locus isoenzyme of carbonic anhydrase?   总被引:4,自引:0,他引:4  
Rabbit muscle cytosol extract contains a basic protein which represents about 2% of the total cytosol protein. It contains zinc in a 1:1 stoichiometric ratio, based on a molecular weight of 30,000, and it catalyzes the hydration of CO2. It is immunochemically distinct from the high and low activity forms of rabbit blood carbonic anhydrase. It has comparatively poor activity as an esterase, and about 20% of the CO2 hydratase activity of the rabbit blood low activity carbonic anhydrase. This CO2 hydratase activity is not inhibited by acetazolamide at concentrations which totally inhibit the activity of the blood carbonic anhydrases. The evidence obtained to date, though circumstantial, suggests that this basic metalloprotein is a carbonic anhydrase derived from a third genetic locus with properties considerably different from those of the mammalian carbonic anhydrases heretofore identified.  相似文献   

16.
A method is developed to isolate lysyl-tRNA-synthetase from 93-95%-purity postribosomal supernatant fraction of skeletal muscle homogenate in rabbit. Novelty of the method is the ATP usage for muscle homogenization, which permits shortening the number of operations during the enzyme isolation. The molecular weight of protein is 68 +/- 10 kDa, the monomer unit consists of 540 amino acids and contains a carbohydrate component.  相似文献   

17.
1. Two forms of carbonic anhydrase, having isoelectric points of 6.1 and 5.8, were purified from erythrocytes of the toad, Bufo marinus, and the presence of a third form, pI = 5.4, was demonstrated. 2. Each of the two purified isozymes catalyzed the hydration of CO2 and the hydrolysis of nitrophenyl acetate esters at rates characteristic of Type C (or high-activity) forms of carbonic anhydrase. 3. Both forms of the erythrocyte enzyme have similar molecular weights (approx 29,000), amino acid composition, sensitivity to acetazolamide, and kinetic properties. 4. The epithelium of the toad's urinary bladder also was found to contain significant amounts of carbonic anhydrase, which appears by isoelectric focusing to be indistinguishable from the enzyme isolated from the erythrocyte.  相似文献   

18.
Rat lung carbonic anhydrase: activity, localization, and isozymes   总被引:1,自引:0,他引:1  
Carbonic anhydrase activity in rat lungs perfused free of blood was localized by homogenization of the tissue followed by differential centrifugation. Four fractions were obtained from the homogenate, a cell debris pellet with a mitochondrial pellet and a microsomal pellet with a clear cytosol supernatant. The last named fraction contained 67% of the total enzyme activity; the cell debris contained 18%, and the mitochondrial and microsomal contained 8 and 7%, respectively. Of the 33% of enzyme activity associated with the pellet fraction, 25% could be experimentally defined as membrane associated by its solubilization with 0.3 M tris-(hydroxymethyl) aminoethane sulfate buffer. The remainder was defined as membrane bound. Purification of the soluble carbonic anhydrase from the lung yielded two isozymes with electrophoretic and inhibitor sensitivities apparently identical with the blood isozymes. Hemoglobin analysis showed that the lung isozymes could not have included more than 0.03% enzyme from blood contamination. The carbonic anhydrase activity present in the whole rat lung would give an average acceleration of the CO2 hydration reaction under physiological conditions over the uncatalyzed rate of 122, sufficient to maintain equilibration between CO2 and plasma HCO3- during blood transit of the lung. If the membrane-associated activity is mostly on the plasma membrane of the endothelial cells and available to the capillary blood, it would be sufficient to give this acceleration. We suggest that the possible source of this membrane-associated activity might be adsorption from the blood of carbonic anhydrase liberated by erythrocyte lysis.  相似文献   

19.
Procedures for isolating carbonic anhydrase (EC 4.2.1.1) enzymes from the erythrocytes and the mucosae of the gastrointestinal tract of guinea pigs are described. From a haemolysate, haemoglobin was removed by the addition of ammonium sulphate, and also by two other methods, namely by gel filtration or by adsorption on DEAE-Sephadex. The crude enzyme thus obtained was resolved into the different isoenzymes by chromatography with DEAE-cellulose. From particle-free supernatants of homogenates of some gastrointestinal tissues, carbonic anhydrases were purified by ammonium sulphate fractionation, gel filtration, and ion-exchange chromatography with DEAE-cellulose. The major isoenzymes from blood, stomach, proximal colonic mucosa and caecal mucosa were homogeneous during ion-exchange chromatography, acrylamide-gel electrophoresis, and centrifugal examination. From these tissues, carbonic anhydrase was isolated as two major isoenzymes. They resemble the pairs of isoenzymes discovered in the bloods of other species. The carbon dioxide hydratase activity of one isoenzyme (;high activity' carbonic anhydrase) was 40 times that of the other isoenzyme (;low activity' carbonic anhydrase), as measured at a single substrate concentration. Two other minor components of the enzyme are also found in guinea-pig erythrocytes. All of the enzymes isolated had molecular weights of nearly 30000 (sedimentation equilibrium). ;High activity' carbonic anhydrases from blood and gastrointestinal tissues were indistinguishable according to some chemical, physical and kinetic measurements; similarly ;low activity' carbonic anhydrases from those tissues were indistinguishable. ;High activity' carbonic anhydrase was markedly different from the ;low activity' carbonic anhydrase with respect to its amino acid composition, chromatographic behaviour and isoelectric pH value. Marked differences were also found in the tissue concentrations of the major isoenzymes. It is suggested that the characteristic and selective distribution of the different forms of carbonic anhydrase in the guinea-pig tissues is related to the specific and different physiological functions of the enzymes.  相似文献   

20.
Sarcolemmal membrane vesicle preparations from white and red muscles of rat were found to contain a carbonic anhydrase which was indistinguishable from carbonic anhydrase IV from rat lung. This isozyme appears to account for all of the carbonic anhydrase activity in the sarcolemmal vesicle preparations. Digestion of 39-kDa CA IV with endoglycosidase F reduced the Mr to 36 kDa, suggesting that it contains one N-linked oligosaccharide. Treatment of sarcolemmal vesicles with phosphatidylinositol-specific phospholipase C released all of the activity, indicating that the enzyme is anchored to membranes by a phosphatidylinositol-glycan linkage. White muscle sarcoplasmic reticulum vesicles also contain a small amount of 39-kDa CA IV-type enzyme. A 52-kDa polypeptide in sarcoplasmic reticulum membranes cross-reacts with anti-human CA II and anti-rat CA II antisera, but does not bind to the sulfonamide affinity column. This cross-reacting polypeptide has no detectable CA activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号