共查询到20条相似文献,搜索用时 0 毫秒
1.
Hiroki Nishida 《Development, growth & differentiation》2008,50(S1):S239-S256
Appendicularians are planktonic tunicates (urochordates), and retain a swimming tadpole shape throughout their life. Together with ascidians, they are the closest relatives of the vertebrates. Oikopleura dioica is characterized by its simplified life habit and anatomical organization. It has a tiny genome, the smallest ever found in a chordate. Its life cycle is extremely short – about 5 days – and it can be maintained in the laboratory over many generations. Embryos and adults are transparent and consist of a small number of cells. The anatomy of juveniles and adults has been described in detail. Cleavage pattern, cell lineages, and morphogenetic movements during embryogenesis have also been comprehensively documented. A draft genome sequence is now available. These features make this organism a suitable experimental model animal in which genetic manipulations would be feasible, as in Drosophila and Caenorhabditis elegans . In this review, I summarize a hundred years' knowledge on the development throughout the life cycle of this organism. Oikopleura is an attractive organism for developmental and evolutionary studies of chordates. It offers considerable promise for future genetic approaches. 相似文献
2.
3.
The appendicularian urochordate Oikopleura dioica retains a free-swimming chordate body plan throughout life, in contrast to ascidian urochordates, whose metamorphosis to a sessile adult form involves the loss of chordate structures such as the notochord and dorsal nerve cord. Development to adult stages in Oikopleura involves a lengthening of the tail and notochord and an elaboration of the repertoire of tail movements. To investigate the cellular basis for this lengthening, we have used confocal microscopy and BrdU labeling to examine the development of the Oikopleura notochord from hatching through adult stages. We show that as the notochord undergoes the typical urochordate transition from a stacked row of cells to a tubular structure, cell number begins to increase. Addition of new notochord cells continues into adulthood, multiplying the larval complement of 20 cells by about 8-fold by the third day of life. In parallel, the notochord lengthens by about 4-fold. BrdU incorporation and a cell-cycle marker confirm that notochord cells continue to proliferate well into adulthood. The extensive postlarval proliferation of notochord cells, together with their arrangement in four circumferentially distributed longitudinal rows, presumably provides the Oikopleura tail with the necessary mechanical support for the complex movements exhibited at adult stages. 相似文献
4.
In non-vertebrate chordates, central nervous system (CNS) development has been studied in only two taxa, the Cephalochordata and a single Class (Ascidiacea) of the morphologically diverse Urochordata. To understand development and molecular regionalization of the brain in a different deeply diverging chordate clade, we isolated and determined the expression patterns of orthologs of vertebrate CNS markers (otxa, otxb, otxc, pax6, pax2/5/8a, pax2/5/8b, engrailed, and hox1) in Oikopleura dioica (Subphylum Urochordata, Class Larvacea). The three Oikopleura otx genes are expressed similarly to vertebrate Otx paralogs, demonstrating that trans-homologs converged on similar evolutionary outcomes by independent neo- or subfunctionalization processes during the evolution of the two taxa. This work revealed that the Oikopleura CNS possesses homologs of the vertebrate forebrain, hindbrain, and spinal cord, but not the midbrain. Comparing larvacean gene expression patterns to published results in ascidians disclosed important developmental differences and similarities that suggest mechanisms of development likely present in their last common ancestor. In contrast to ascidians, the lack of a radical reorganization of the CNS as larvaceans become adults allows us to relate embryonic gene expression patterns to three subdivisions of the adult anterior brain. Our study of the Oikopleura brain provides new insights into chordate CNS evolution: first, the absence of midbrain is a urochordate synapomorphy and not a peculiarity of ascidians, perhaps resulting from their drastic CNS metamorphosis; second, there is no convincing evidence for a homolog of a midbrain-hindbrain boundary (MHB) organizer in urochordates; and third, the expression pattern of "MHB-genes" in the urochordate hindbrain suggests that they function in the development of specific neurons rather than in an MHB organizer. 相似文献
5.
Michael T. Veeman 《Developmental biology》2010,344(1):138-2203
The relative positions of the brain and mouth are of central importance for models of chordate evolution. The dorsal hollow neural tube and the mouth have often been thought of as developmentally distinct structures that may have followed independent evolutionary paths. In most chordates however, including vertebrates and ascidians, the mouth primordia have been shown to fate to the anterior neural boundary. In ascidians such as Ciona there is a particularly intimate relationship between brain and mouth development, with a thin canal connecting the neural tube lumen to the mouth primordium at larval stages. This so-called neurohypophyseal canal was previously thought to be a secondary connection that formed relatively late, after the independent formation of the mouth primordium and the neural tube. Here we show that the Ciona neurohypophyseal canal is present from the end of neurulation and represents the anteriormost neural tube, and that the future mouth opening is actually derived from the anterior neuropore. The mouth thus forms at the anterior midline transition between neural tube and surface ectoderm. In the vertebrate Xenopus, we find that although the mouth primordium is not topologically continuous with the neural tube lumen, it nonetheless forms at this same transition point. This close association between the mouth primordium and the anterior neural tube in both ascidians and amphibians suggests that the evolution of these two structures may be more closely linked than previously appreciated. 相似文献
6.
Dishevelled signaling plays a critical role in the control of cell intercalation during convergent extension in vertebrates. This study presents evidence that Dishevelled serves a similar function in the Ciona notochord. Embryos transgenic for mutant Dishevelled fail to elongate their tails, and notochord cells fail to intercalate, though notochord cell fates are unaffected. Analysis of mosaic transgenics revealed that the effects of mutant Dishevelled on notochord intercalation are cell-autonomous in Ciona, though such defects have nonautonomous effects in Xenopus. Furthermore, our data indicate that notochord cell intercalation in Ciona does not require the progressive signals which coordinate cell intercalation in the Xenopus notochord, highlighting an important difference in how mediolateral cell intercalation is controlled in the two animals. Finally, this study establishes the Ciona embryo as an effective in vivo system for the study of the molecular control of morphogenetic cell movements in chordates. 相似文献
7.
Summary In the pelagic larvacean Oikopleura dioica, the epithelium lining the alimentary tract consists of ciliated and unciliated cell types. The ciliated cells also exhibit an apical border of long microvilli. Between the microvilli, the cellular membrane often projects deeply down into the cytoplasm; the membranes of these invaginations and those of apicolateral interdigitations may be associated with one another by tight junctions. Some of these junctions may be autocellular. The tight junctions are seen by freeze-fracture to be very simple in construction, composed of a single row of intramembranous particles, which may be fused into a P-face ridge. There is a dense cytoplasmic fuzz associated with these tight junctions which may extend into adjoining zonula adhaerens-like regions. The invaginations of the apical membranes are, in addition, associated by gap junctions which may also be autocellular. More conventional homocellular and heterocellular tight and gap junctions occur along the lateral borders of ciliated cells and between ciliated and unciliated cells. These gap junctions possess a reduced intercellular cleft and typical P-face connexons arranged in macular plaques, with complementary E-face pits. Both cell types exhibit extensive stacks of basal and lateral interdigitations. The tight junctions found here are unusual in that they are associated with a dense cytoplasmic fuzz which is normally more characteristic of zonulae adhaerentes. 相似文献
8.
The olfactory epithelium (OE) is derived from the olfactory placode (OP) during mouse development. At embryonic day (E) 10.0-E10.5, “early neurogenesis” occurs in the OE, which includes production of pioneer neurons that emigrate out of the OE and other early-differentiated neurons. Around E12.5, the OE becomes organized into mature pseudostratified epithelium and shows “established neurogenesis,” in which olfactory receptor neurons (ORNs) are differentiated from basal progenitors. Little is known about the molecular pathway of early neurogenesis. The homeodomain protein Six1 is expressed in all OP cells and neurogenic precursors in the OE. Here we show that early neurogenesis is severely disturbed despite the unaltered expression of Mash1 at E10.5 in the Six1-deficient mice (Six1−/−). Expression levels of neurogenin1 (Ngn1) and NeuroD are reduced and those of Hes1 and Hes5 are augmented in the OE of Six1−/− at E10.5. Pioneer neurons and cellular aggregates, which are derived from the OP/OE and situated in the mesenchyme between the OE and forebrain, are completely absent in Six1−/−. Moreover, ORN axons and the gonadotropin-releasing hormone-positive neurons fail to extend and migrate to the forebrain, respectively. Our study indicates that Six1 plays critical roles in early neurogenesis by regulating Ngn1, NeuroD, Hes1, and Hes5. 相似文献
9.
10.
The Drosophila melanogaster ventral nerve cord derives from neural progenitor cells called neuroblasts. Individual neuroblasts have unique gene expression profiles and give rise to distinct clones of neurons and glia. The specification of neuroblast identity provides a cell intrinsic mechanism which ultimately results in the generation of progeny which are different from each other. Segment polarity genes have a dual function in early neurogenesis: within distinct regions of the neuroectoderm, they are required both for neuroblast formation and for the specification of neuroblast identity. Previous studies of segment polarity gene function largely focused on neuroblasts that arise within the posterior part of the segment. Here we show that the segment polarity gene midline is required for neuroblast formation in the anterior-most part of the segment. Moreover, midline contributes to the specification of anterior neuroblast identity by negatively regulating the expression of Wingless and positively regulating the expression of Mirror. In the posterior-most part of the segment, midline and its paralog, H15, have partially redundant functions in the regulation of the NB marker Eagle. Hence, the segment polarity genes midline and H15 play an important role in the development of the ventral nerve cord in the anterior- and posterior-most part of the segment. 相似文献
11.
Summary The spermatozoon of Oikopleura dioica is about 30 m long, with a spherical head, about 1 m wide, a 3 m long and 1 m wide midpiece, and a 25 m long tail with a tapered end piece. The head contains a nucleus with the chromatin volume limited to about 0.1 m3. A small acrosome is found in an anterior inpocketing, and a flagellar basal body in a posterior inpocketing of the nucleus. The midpiece contains a single mitochondrion with the flagellar axoneme embedded in a groove along its medial surface. The flagellar axoneme has the typical 9 + 2 substructure, and the basal body the typical 9+0 substructure. A second centriole and special anchoring fibres are absent. 相似文献
12.
Metazoan lamins are implicated in the organization of numerous critical nuclear processes. Among chordates, the appendicularian, Oikopleura dioica, has an unusually short life cycle involving rapid growth through extensive recourse to endoreduplication, a characteristic more associated with some invertebrates. In some tissues, this is accompanied by the formation of elaborate, bilaterally symmetric nuclear morphologies associated with specific gene expression patterns. Lamin composition can mediate nuclear shape in spermiogenesis as well as during pathological and normal aging and we have analyzed the O. dioica lamin and intermediate filament (IF) complement, comparing it to that present in other deuterostomes. O. dioica has one lamin gene coding two splice variants. Both variants share with the sister class ascidians a highly reduced C-terminal tail region lacking the immunoglobulin fold, indicating this derivation occurred at the base of the urochordate lineage. The OdLamin2 variant has a unique insertion of 63 amino acids in the normally short N-terminal region and has a developmental expression profile corresponding to the occurrence of endocycling. O. dioica has 4 cytoplasmic IF proteins, IF-A, C, Dalpha, and Dbeta. No homologues to the ascidian IF-B or F proteins were identified, reinforcing the suggestion that these proteins are unique to ascidians. The degree of sequence evolution in the rod domains of O. dioica cytoplasmic IF proteins and their closest ascidian and vertebrate homologues was similar. In contrast, whereas the rate of lamin B rod domain sequence evolution has also been similar in vertebrates, cephalochordates and the sea urchin, faster rates have occurred among the urochordates, with the O. dioica lamin displaying a far greater rate than any other lamin. 相似文献
13.
Mitsuhiko Kurusu Yasushi Maruyama Masataka Okabe Katsuo Furukubo-Tokunaga 《Developmental biology》2009,326(1):224-136
The intrinsic neurons of mushroom bodies (MBs), centers of olfactory learning in the Drosophila brain, are generated by a specific set of neuroblasts (Nbs) that are born in the embryonic stage and exhibit uninterrupted proliferation till the end of the pupal stage. Whereas MB provides a unique model to study proliferation of neural progenitors, the underlying mechanism that controls persistent activity of MB-Nbs is poorly understood. Here we show that Tailless (TLL), a conserved orphan nuclear receptor, is required for optimum proliferation activity and prolonged maintenance of MB-Nbs and ganglion mother cells (GMCs). Mutations of tll progressively impair cell cycle in MB-Nbs and cause premature loss of MB-Nbs in the early pupal stage. TLL is also expressed in MB-GMCs to prevent apoptosis and promote cell cycling. In addition, we show that ectopic expression of tll leads to brain tumors, in which Prospero, a key regulator of progenitor proliferation and differentiation, is suppressed whereas localization of molecular components involved in asymmetric Nb division is unaffected. These results as a whole uncover a distinct regulatory mechanism of self-renewal and differentiation of the MB progenitors that is different from the mechanisms found in other progenitors. 相似文献
14.
Yu T Li J Yang Y Qi L Chen B Zhao F Bao Q Wu J 《Molecular phylogenetics and evolution》2012,62(1):206-213
Marine unicellular cyanobacteria, represented by Synechococcus and Prochlorococcus, dominate the total phytoplankton biomass and production in oligotrophic ocean. In this study, we employed comparative genomics approaches to extensively investigate synonymous codon usage bias and evolutionary rates in a large number of closely related species of marine unicellular cyanobacteria. Although these two groups of marine cyanobacteria have a close phylogenetic relationship, we find that they are highly divergent not only in codon usage patterns but also in the driving forces behind the diversification. It is revealed that in Prochlorococcus, mutation and genome compositional constraints are the main forces contributing to codon usage bias, whereas in Synechococcus, translational selection. In addition, nucleotide substitution rate analysis indicates that they are not evolving at a constant rate after the divergence and that the average dN/dS values of core genes in Synechococcus are significantly higher than those in Prochlorococcus. Our evolutionary genomic analysis provides the first insight into codon usage, evolutionary genetic mechanisms and environmental adaptation of Synechococcus and Prochlorococcus after divergence. 相似文献
15.
The appendicularian, Oikopleura dioica, is a planktonic chordate. Its simple and transparent body, invariant cell lineages and short life cycle of 5 days make it a promising model organism for studies of chordate development. Here we describe the cell migration that occurs during development of the O. dioica larva. Using time-lapse imaging facilitated by florescent labeling of cells, three cell populations exhibiting long-distance migration were identified and characterized. These included (i) a multinucleated oral gland precursor that migrates anteriorly within the trunk region and eventually separates into the left and right sides, (ii) endodermal strand cells that are collectively retracted from the tail into the trunk in a tractor movement, and (iii) two subchordal cell precursors that individually migrate out from the trunk to the tip of the tail. The migration of subchordal cell precursors starts when all of the endodermal strand cells enter the trunk, and follows the same path but in a direction opposite to that of the latter. Labeling of these cells with a photoconvertible fluorescent protein, Kaede, demonstrated that the endodermal strand cells and subchordal cell precursors have distinct origins and eventual fates. Surgical removal of the trunk from the tail demonstrated that the endodermal strand cells do not require the trunk for migration, and that the subchordal cell precursors would be attracted by the distal part of the tail. This well-defined, invariant and traceable long-distance cell migration provides a unique experimental system for exploring the mechanisms of versatile cell migration in this simple organism with a chordate body plan. 相似文献
16.
In the vertebrate central nervous system (CNS), mutual antagonism between posteriorly expressed Gbx2 and anteriorly expressed Otx2 positions the midbrain/hindbrain boundary (MHB), but does not induce MHB organizer genes such as En, Pax2/5/8 and Wnt1. In the CNS of the cephalochordate amphioxus, Otx is also expressed anteriorly, but En, Pax2/5/8 and Wnt1 are not expressed near the caudal limit of Otx, raising questions about the existence of an MHB organizer in amphioxus. To investigate the evolutionary origins of the MHB, we cloned the single amphioxus Gbx gene. Fluorescence in situ hybridization showed that, as in vertebrates, amphioxus Gbx and the Hox cluster are on the same chromosome. From analysis of linked genes, we argue that during evolution a single ancestral Gbx gene duplicated fourfold in vertebrates, with subsequent loss of two duplicates. Amphioxus Gbx is expressed in all germ layers in the posterior 75% of the embryo, and in the CNS, the Gbx and Otx domains abut at the boundary between the cerebral vesicle (forebrain/midbrain) and the hindbrain. Thus, the genetic machinery to position the MHB was present in the protochordate ancestors of the vertebrates, but is insufficient for induction of organizer genes. Comparison with hemichordates suggests that anterior Otx and posterior Gbx domains were probably overlapping in the ancestral deuterostome and came to abut at the MHB early in the chordate lineage before MHB organizer properties evolved. 相似文献
17.
Thyroid hormone (T3) influences cell proliferation, death and differentiation during development of the central nervous system (CNS). Hormone action is mediated by T3 receptors (TR) of which there are two subtypes, TRα and TRβ. Specific roles for TR subtypes in CNS development are poorly understood. We analyzed involvement of TRα and TRβ in neural cell proliferation during metamorphosis of Xenopus laevis. Cell proliferation in the ventricular/subventricular neurogenic zones of the tadpole brain increased dramatically during metamorphosis. This increase was dependent on T3 until mid-prometamorphosis, after which cell proliferation decreased and became refractory to T3. Using double labeling fluorescent histochemistry with confocal microscopy we found TRα expressed throughout the tadpole brain, with strongest expression in proliferating cells. By contrast, TRβ was expressed predominantly outside of neurogenic zones. To corroborate the histochemical results we transfected living tadpole brain with a Xenopus TRβ promoter-EGFP plasmid and found that most EGFP expressing cells were not dividing. Lastly, treatment with the TRα selective agonist CO23 increased brain cell proliferation; whereas, treatment with the TRβ-selective agonists GC1 or GC24 did not. Our findings support the view that T3 acts to induce cell proliferation in the tadpole brain predominantly, if not exclusively, via TRα. 相似文献
18.
Segment formation is critical to arthropod development, yet there is still relatively little known about this process in most arthropods. Here, we present the expression patterns of the genes even-skipped (eve), engrailed, and wingless in a centipede, Lithobius atkinsoni. Despite some differences when compared with the patterns in insects and crustaceans, the expression of these genes in the centipede suggests that their basic roles are conserved across the mandibulate arthropods. For example, unlike the seven pair-rule stripes of eve expression in the Drosophila embryonic germband, the centipede eve gene is expressed strongly in the posterior of the embryo, and in only a few stripes between newly formed segments. Nonetheless, this pattern likely reflects a conserved role for eve in the process of segment formation, within the different context of a short-germband mode of embryonic development. In the centipede, the genes wingless and engrailed are expressed in stripes along the middle and posterior of each segment, respectively, similar to their expression in Drosophila. The adjacent expression of the engrailed and wingless stripes suggests that the regulatory relationship between the two genes may be conserved in the centipede, and thus this pathway may be a fundamental mechanism of segmental development in most arthropods. 相似文献
19.
In vertebrates, little is known on the role of programmed cell death (PCD) occurring within the population of dividing neural precursors and newly formed neuroblasts during early neural development. During primary neurogenesis, PCD takes place within the neuroectoderm of Xenopus embryos in a reproducible stereotypic pattern, suggesting a role for PCD during the early development of the CNS. We find that the spatio-temporal pattern of PCD is unaffected in embryos in which cell proliferation has been blocked and whose neuroecotoderm contains half the normal number of cells. This shows that PCD is not dependent on cell division. It further suggests that PCD does not solely function to regulate absolute cell numbers within the neuroectoderm. We demonstrate that PCD can be reproducibly inhibited in vivo during primary neurogenesis by the overexpression of human Bcl-2. Following PCD inhibition, normal neurogenesis is disrupted, as seen by the expansion of the expression domains of XSox-2, XZicr-2, XNgnr-1, XMyT-1, and N-Tubulin, XNgnr-1 being the most affected. PCD inhibition, however, did not affect the outcome of lateral inhibition. We propose, then, that PCD regulates primary neurogenesis at the level of neuronal determination. 相似文献
20.
The survival of animal tissues and organs is controlled through both activation and suppression of programmed cell death. In the colonial urochordate Botryllus schlosseri, the entire parental generation of zooids in a colony synchronously dies every week as the asexually derived generation of buds reaches functional maturity. This process, called takeover, involves massive programmed cell death (PCD) of zooid organs via apoptosis followed by programmed removal of cell corpses by blood phagocytes within approximately 1 day. We have previously reported that developing buds in conjunction with circulating phagocytes are key effectors of zooid resorption and macromolecular recycling during takeover, and as such engineer the reconstitution of a functional asexual generation every week [Lauzon, R.J., Ishizuka, K.J., Weissman, I.L., 2002. Cyclical generation and degeneration of organs in a colonial urochordate involves crosstalk between old and new: a model for development and regeneration. Dev. Biol. 249, 333-348]. Here, we demonstrate that zooid lifespan during cyclic blastogenesis is regulated by two independent signals: a bud-independent signal that activates zooid PCD and a bud-dependent, survival signal that acts in short-range fashion via the colonial vasculature. As zooids represent a transient, mass-produced commodity during Botryllus asexual development, PCD regulation in this animal via both activation and suppression enables it to remove and recycle its constituent zooids earlier when intra-colony resources are low, while maintaining the functional filter-feeding state when resources are adequate. We propose that this crosstalk mechanism between bud and parent optimizes survival of a B. schlosseri colony with each round of cyclic blastogenesis. 相似文献