首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In subjects with Zellweger syndrome, the most severe phenotype of peroxisomal biogenesis disorder, brain abnormalities include cortical dysplasia, neuronal heterotopia, and dysmyelination. To clarify the relationship between the lack of peroxisomes and neuronal abnormalities, we investigated peroxisomal localization in the mouse cerebellum, using double immunofluorescent staining for peroxisomal proteins. On immunostaining for peroxisomal matrix protein, while there are few peroxisomes in Purkinje cells, many locate in astroglia, especially soma of Bergmann glia. Clusters of peroxisomes were seen on the inferior side of the Purkinje cell layer in mice on postnatal days 3-5, and with time there was a shift to the superior side. The peroxisomal punctate pattern was seen to be radial and co-localized with Bergmann glial fibers. In cultured cells from the mouse cerebellum, peroxisomes were few in Purkinje cells, whereas many were evident in glial fibrillary acidic protein-positive cells. On the other hand, on immunostaining for peroxisomal membrane protein Pex14p, many particles were seen in Purkinje cells during all developmental stages, which means Purkinje cells possessed empty peroxisomal structures similar to findings of fibroblasts from the Zellweger patients. As peroxisomes in glial cells may control the development of neurons, the neuron-glial interaction and mechanisms of developing central nervous systems deserve ongoing attention.  相似文献   

4.
Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.  相似文献   

5.
Oligodendrocytes (OLs) are the glial cells of the central nervous system and are classically known to form myelin sheaths around most axons of higher vertebrates. Whether these cells might have other roles, in particular during development, has not been studied. Taking advantage of a transgenic mouse model in which OLs can be selectively killed in a desired time-frame, we have investigated the impact of OL ablation on cerebellar development. OL ablation was induced during the first 3 postnatal weeks, a time at which cerebellum development is ongoing. Strikingly, OL ablation triggers a profound perturbation of the known cerebellum developmental program, characterized by the disorganization of the cortical layers, abnormal foliation and a complete alteration of Purkinje cell dendritic arborization and axonal fasciculation. This phenotype is accompanied by decreased granule cell density, a disorganized Bergmann glia network and impaired migration of interneurons in the molecular layer. These results demonstrate a previously ignored role of OLs in the formation of the cerebellar cytoarchitecture.  相似文献   

6.
Although fibroblast growth factor 9 (FGF9) is widely expressed in the central nervous system (CNS), the function of FGF9 in neural development remains undefined. To address this question, we deleted the Fgf9 gene specifically in the neural tube and demonstrated that FGF9 plays a key role in the postnatal migration of cerebellar granule neurons. Fgf9-null mice showed severe ataxia associated with disrupted Bergmann fiber scaffold formation, impaired granule neuron migration, and upset Purkinje cell maturation. Ex vivo cultured wildtype or Fgf9-null glia displayed a stellate morphology. Coculture with wildtype neurons, but not Fgf9-deficient neurons, or treating with FGF1 or FGF9 induced the cells to adopt a radial glial morphology. In situ hybridization showed that Fgf9 was expressed in neurons and immunostaining revealed that FGF9 was broadly distributed in both neurons and Bergmann glial radial fibers. Genetic analyses revealed that the FGF9 activities in cerebellar development are primarily transduced by FGF receptors 1 and 2. Furthermore, inhibition of the MAP kinase pathway, but not the PI3K/AKT pathway, abrogated the FGF activity to induce glial morphological changes, suggesting that the activity is mediated by the MAP kinase pathway. This work demonstrates that granule neurons secrete FGF9 to control formation of the Bergmann fiber scaffold, which in turn, guides their own inward migration and maturation of Purkinje cells.  相似文献   

7.
Reelin is an extracellular matrix molecule that is involved in the normal development of the cerebellar lamination, Bergmann glial fibres alignment, Purkinje cell monolayer arrangement and granule cell migration. In this study, we have examined the effects of maternal exposure of deltamethrin (DLT), a type II pyrethroid insecticide, on the structural and functional development of rat cerebellum during postnatal life. DLT (0.75 mg/kg body weight, intraperitoneally dissolved in dimethylsulphoxide) was administered in timed pregnant rats during two different gestational time periods, i.e. gestational days of 7–10 and 11–14, respectively. In DLT exposed rats, a significant overexpression of reelin was observed in the cells of the external granule cell layer (EGL) and internal granule cell layer along with an ectopic expression of reelin in the EGL as well as in the migrating granule cells just below the EGL, revealing an arrest of granule cell migration in this zone. Mis-orientation and hypertrophy of the Bergmann glial fibres further hampered the journey of the granule cells to their final destination. Possibly reelin overexpression also caused misalignment of the Purkinje cells and inhibited the neurite growth leading to a significant decrease in the spine density, main dendritic length and width of the dendritic arbour. Thus, it is proposed that the DLT exerts its neurotoxic effects possibly via the intracellular accumulation and low release of reelin leading to an impaired granule cell and Purkinje cell migration, inhibition of neurite outgrowth and reduced spine density. Such impaired cerebellar development leads to motor coordination deficits.  相似文献   

8.
9.
The major histogenetic events of the rat cerebellum take place in the early postnatal days. During this period, precursors of microneurons, such as granule cells, form the external granular layer (EGL), extend over the surface of the primordial cerebellum, and actively proliferate. Postmitotic granule cells leave the EOL and migrate to the internal granular layer (IGL). On the other hand, guided by radial glial fibers, immature Purkinje cells migrate from the ventricular zone of the fourth ventricle and settle in the Purkinje cell plate with thickness of several cells. Various cell adhesion molecules are involved in the interaction between the migratory immature Purkinje cells and processes of the radial glia as the basis for contact guidance. The second process is the formation of immature Purkinje cells to the monolayer. This process takes place at the first week after birth of the rat and cell adhesion molecules such as neural cell adhesion molecule (NCAM), fibronectin, tenascin and Reelin are also suggested to play an important role for the cell patterning. When rat fetuses are exposed to X-radiation in the last gestation period, abnormal foliation of the cerebellum develops with ectopic Purkinje cells. The molecular mechanism that contributes to abnormal migration of Purkinje cells and foliar malformation induced by X-irradiation in the cerebellum are not yet clear. This study was undertaken to elucidate the mechanisms of ectopic Purkinje cell formation by examining the expression of cell adhesion molecules.  相似文献   

10.
The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.  相似文献   

11.
The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.  相似文献   

12.
Summary Scanning electron microscopy and cryofracture technique were applied to study neuronal architecture and synaptic connections of the human cerebellum. Samples were processed according to the technique of Humphreys et al. (1975) with minor modifications. The granule cells exhibit unbranched filiform axons and coniform dendritic processes. The latter show typical claw-like endings making gearing type synaptic contacts with mossy fiber rosettes. The unattached mossy rosettes appear as solid club-like structures. Some fractographs show individual granule cells, Golgi neurons and glomerular islands. The climbing fibers and their Scheibel's collaterals were also characterized. In the Purkinje layer the surface fracture was produced at the level of the Bergmann glial cells, which are selectively removed, allowing us to visualize the rough surface of Purkinje cells and the supra- and infraganglionic plexuses of basket cell axons which appeared as entangled threads. In the molecular layer the three-dimensional configuration of the Purkinje secondary and tertiary dendritic branches was obtained. The filiform parallel fibers make cruciform synaptic contacts with the Purkinje dendritic spines. The appearance of stellate neuronal somata closely resembled that of the granule cells. The subpial terminals of Bergmann fibers appeared attached to the exterior of the folia forming the rough surfaced external glial limiting membrane.  相似文献   

13.
Notch family molecules are thought to be negative regulators of neuronal differentiation in early brain development. After expression in the embryonic period, Notch2 continues to be expressed postnatally in the specific regions in the rodent brain. Here, we examined Notch2 expression in the postnatal mouse brain using lacZ knockin animals at the Notch2 locus. Notch2 expression was observed in the developing cerebellum and hippocampus, characteristic regions where neurogenesis persists after birth. Double staining of sections revealed that Notch2 was expressed by Bergmann glia in the cerebellum, radial glia in the hippocampus, and some astrocytes in both regions. Notch2 expression by glial cells was clearly confirmed in dissociated cell cultures. Interestingly, neocortical glia, many of which did not express Notch2 in vivo, did express Notch2 in a dissociated culture condition. The triple staining of dissociated cell cultures revealed that stronger Notch2 expression correlated with the immature type of glial gene expressions: stronger vimentin and weaker glial fibrillary acidic protein expressions. In addition, Notch2 expression correlated with the incorporation of bromodeoxyuridine both in vivo and in vitro. Thus, these findings demonstrate that Notch2 is expressed not only by neuronal cells in the embryonic brain, but also by glial cells in the postnatal brain, and that its expression negatively correlates with glial differentiation, proposing its novel function as a negative regulator of glial differentiation in mammalian brain development.  相似文献   

14.
15.
Notch signaling plays a pivotal role in the regulation of vertebrate neurogenesis. However, in vitro experiments suggest that Notch1 may also be involved in the regulation of later stages of brain development. We have addressed putative roles in the central nervous system by examining the expression of Notch signaling cascade components in the postnatal mouse brain. In situ mRNA hybridization revealed that Notch1 is associated with cells in the subventricular zone, the dentate gyrus and the rostromigratory stream, all regions of continued neurogenesis in the postnatal brain. In addition, Notch1 is expressed at low levels throughout the cortex and olfactory bulb and shows striking expression in the cerebellar Purkinje cell layer. The Notch ligands, including Delta-like1 and 3 and Jagged1 and Jagged2, show distinct expression patterns in the developing and adult brain overlapping that of Notch1. In addition, the downstream targets of the Notch signaling cascade Hes1, Hes3, Hes5 and the intrinsic Notch regulatory proteins Numb and Numblike also show active signaling in distinct brain regions. Hes5 coincides with the majority of Notch1 expression and can be detected in the cerebral cortex, cerebellum and putative germinal zones. Hes3, on the other hand, shows a restricted expression in cerebellar Purkinje cells. The distribution of Notch1 and its putative ligands suggest distinct roles in specific subsets of cells in the postnatal brain including putative stem cells and differentiated neurons.  相似文献   

16.
Sonic hedgehog regulates the growth and patterning of the cerebellum.   总被引:1,自引:0,他引:1  
The molecular bases of brain development and CNS malignancies remain poorly understood. Here we show that Sonic hedgehog (Shh) signaling controls the development of the cerebellum at multiple levels. SHH is produced by Purkinje neurons, it is required for the proliferation of granule neuron precursors and it induces the differentiation of Bergmann glia. Blocking SHH function in vivo results in deficient granule neuron and Bergmann glia differentiation as well as in abnormal Purkinje neuron development. Thus, our findings provide a molecular model for the growth and patterning of the cerebellum by SHH through the coordination of the development of cortical cerebellar cell types. In addition, they provide a cellular context for medulloblastomas, childhood cancers of the cerebellum.  相似文献   

17.
Shirai  Yoshinori  Ito  Masao 《Brain Cell Biology》2004,33(3):297-307
Phospholipase A2 (PLA2) is a family of enzymes playing diverse roles in lipid signaling in neurons and glia cells. In this study, we examined the expression of subtypes of PLA2 in the cerebellum using immunolabeling and in situ hybridization methods. Two Ca2+-dependent cytosolic subtypes (cPLA2α and cPLA2β), one Ca2+-independent cytosolic subtype (iPLA2), and two secretory subtypes (sPLA2IIA and sPLA2V) were detected in the cerebellum. cPLA2α is present in somata and dendrites of Purkinje cells, while sPLA2IIA is associated with the endoplasmic reticulum in perinuclear regions of Purkinje cell somata. iPLA2 is present in granule cells, stellate cells and also in the nucleus of Purkinje cells. In addition, cPLA2β is localized in granule cells, and sPLA2V in Bergmann glia cells. These results provide an important basis for identifying functional roles of PLA2s in the cerebellum.  相似文献   

18.
The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS)-specific deletion of cytosolic (Txnrd1) and mitochondrial (Txnrd2) thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL) was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells.  相似文献   

19.
Notch signaling plays various key roles in cell fate determination during CNS development in a context-dependent fashion. However, its precise physiological role and the localization of its target cells remain unclear. To address this issue, we developed a new reporter system for assessing the RBP-J-mediated activation of Notch signaling target genes in living cells and tissues using a fluorescent protein Venus. Our reporter system revealed that Notch signaling is selectively activated in neurosphere-initiating multipotent neural stem cells in vitro and in radial glia in the embryonic forebrain in vivo. Furthermore, the activation of Notch signaling occurs during gliogenesis and is required in the early stage of astroglial development. Consistent with these findings, the persistent activation of Notch signaling inhibits the differentiation of GFAP-positive astrocytes. Thus, the development of our RBP-J-dependent live reporter system, which is activated upon Notch activation, together with a stage-dependent gain-of-function analysis allowed us to gain further insight into the complexity of Notch signaling in mammalian CNS development.  相似文献   

20.
M Fisher  R J Mullen 《Neuron》1988,1(2):151-157
Cerebella, variably deficient in Purkinje cells, were obtained from aggregation chimeras of either Lurcher or Purkinje cell degeneration mutants. These cerebella were used to analyze the expression of glycerol-3-phosphate dehydrogenase (GPDH) in Bergmann glia. Immunocytochemistry showed apparently normal GPDH expression only in Bergmann glia in the immediate vicinity of surviving Purkinje cells. The number of GPDH-positive Bergmann glia cells associated with isolated Purkinje cells was close to that expected, based on measurements in Golgi-stained, normal cerebella of the Bergmann glia cell's domain. The results support the hypothesis that GPDH expression in Bergmann glia cells depends upon their sustained interaction with Purkinje cells, most likely involving direct cell-cell contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号