首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology and topographic distribution of somatostatin-immunoreactive cells in the stomach and small intestine of the frog Rana esculenta were studied at the light-microscopic level by the use of the peroxidase-antiperoxidase method. Scattered immunostained cells occurred in all regions of the gastrointestinal tract investigated. In the small intestine, the number of these cells decreased gradually in the oral to anal direction, i.e. from the pyloric (antral) stomach to the entrance into the colon. Most of the immunostained cells possessed thick, short cytoplasmic processes, which did not display a preferential spatial orientation. Other somatostatin-immunoreactive cells, which were exclusively located in the small intestine, gave rise to a single long extension oriented toward the lumen. In both stomach and small intestine, a complete penetration of the epithelial surface by these processes of somatostatin-immunoreactive cells was observed only occasionally. The morphological features of the somatostatin-immunostained cells speak in favor of endocrine, paracrine, and possibly also intraluminal secretory functions of the enteroendocrine somatostatin system in frogs.Fellow of the Alexander von Humboldt Foundation, Bonn, Germany  相似文献   

2.
3.

Background

There are four cell lineages derived from intestinal stem cells that are located at the crypt and villus in the mammalian intestine the non-secretory absorptive enterocytes, and the secretory cells, which include mucous-secreting goblet cells, regulatory peptide-secreting enteroendocrine cells and antimicrobial peptide-secreting Paneth cells. Although fibroblast growth factor (Fgf) signaling is important for cell proliferation and differentiation in various tissues, its role in intestinal differentiation is less well understood.

Methodology/Principal Findings

We used a loss of function approach to investigate the importance of Fgf signaling in intestinal cell differentiation in zebrafish; abnormal differentiation of goblet cells was observed when Fgf signaling was inhibited using SU5402 or in the Tg(hsp70ldnfgfr1-EGFP) transgenic line. We identified Fgfr2c as an important receptor for cell differentiation. The number of goblet cells and enteroendocrine cells was reduced in fgfr2c morphants. In addition to secretory cells, enterocyte differentiation was also disrupted in fgfr2c morphants. Furthermore, proliferating cells were increased in the morphants. Interestingly, the loss of fgfr2c expression repressed secretory cell differentiation and increased cell proliferation in the mibta52b mutant that had defective Notch signaling.

Conclusions/Significance

In conclusion, we found that Fgfr2c signaling derived from mesenchymal cells is important for regulating the differentiation of zebrafish intestine epithelial cells by promoting cell cycle exit. The results of Fgfr2c knockdown in mibta52b mutants indicated that Fgfr2c signaling is required for intestinal cell differentiation. These findings provide new evidences that Fgf signaling is required for the differentiation of intestinal cells in the zebrafish developing gut.  相似文献   

4.
5.
The four cell types of gut epithelium, enteroendocrine cells, enterocytes, Paneth cells and goblet cells, arise from a common totipotent stem cell located in the mid portion of the intestinal gland. The secretin-producing (S) cell is one of at least ten cell types belonging to the diffuse neuroendocrine system of the gut. We have examined the developmental relationship between secretin cells and other enteroendocrine cell types by conditional ablation of secretin cells in transgenic mice expressing herpes simplex virus 1 thymidine kinase (HSVTK). Ganciclovir-treated mice showed markedly increased numbers of apoptotic cells at the crypt-villus junction. Unexpectedly, ganciclovir treatment induced nearly complete ablation of enteroendocrine cells expressing cholecystokinin and peptide YY/glucagon (L cells) as well as secretin cells, suggesting a close developmental relationship between these three cell types. In addition, ganciclovir reduced the number of enteroendocrine cells producing gastric inhibitory polypeptide, substance-P, somatostatin and serotonin. During recovery from ganciclovir treatment, the enteroendocrine cells repopulated the intestine in normal numbers, suggesting that a common early endocrine progenitor was spared. Expression of BETA2, a basic helix-loop-helix protein essential for differentiation of secretin and cholecystokinin cells was examined in the proximal small intestine. BETA2 expression was seen in all enteroendocrine cells and not seen in nonendocrine cells. These results suggest that most small intestinal endocrine cells are developmentally related and that a close developmental relationship exists between secretin-producing S cells and cholecystokinin-producing and L type enteroendocrine cells. In addition, our work shows the existence of a multipotent endocrine-committed cell type and locates this hybrid multipotent cell type to a region of the intestine populated by relatively immature cells.  相似文献   

6.
Adult stem cell niches are often co-inhabited by cycling and quiescent stem cells. In the intestine, lineage tracing has identified Lgr5(+) cells as frequently cycling stem cells, whereas Bmi1(+), mTert(+), Hopx(+) and Lrig1(+) cells appear to be more quiescent. Here, we have applied a non-mutagenic and cell cycle independent approach to isolate and characterize small intestinal label-retaining cells (LRCs) persisting in the lower third of the crypt of Lieberkühn for up to 100 days. LRCs do not express markers of proliferation and of enterocyte, goblet or enteroendocrine differentiation, but are positive for Paneth cell markers. While during homeostasis, LR/Paneth cells appear to play a supportive role for Lgr5(+) stem cells as previously shown, upon tissue injury they switch to a proliferating state and in the process activate Bmi1 expression while silencing Paneth-specific genes. Hence, they are likely to contribute to the regenerative process following tissue insults such as chronic inflammation.  相似文献   

7.
《Organogenesis》2013,9(4):201-210
The Xenopus laevis cyclin dependent kinase inhibitor p27Xic1 has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27Xic1 is expressed in the developing kidney in the nephrostomal regions. Using over-expression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27Xic1 regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27Xic1 expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27Xic1 are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27Xic1, and reveal its differentiation function is not universally utilised in all developing tissues.  相似文献   

8.
The Xenopus laevis cyclin dependent kinase inhibitor p27Xic1 has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27Xic1 is expressed in the developing kidney in the nephrostomal regions. Using overexpression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27Xic1 regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27Xic1 expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27Xic1 are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27Xic1, and reveal its differentiation function is not universally utilised in all developing tissues.  相似文献   

9.
10.
11.
12.
Most cells in the body are in a resting state and undergo cell cycle progression only upon growth factor stimulation or activation. While much research on proliferation and activation has been performed, very little about signals that maintain quiescent cells in G0 is known, preventing cell cycle entry or apoptosis. In this study, the pathways of apoptosis induction in quiescent peripheral blood cells and fibroblasts mediated by inhibition or down-regulation of Dipeptidyl Peptidase 2 (DPP2) have been explored. A decrease in DPP2 activity was found to cause resting cells to exit from G0, accompanied by a decrease in p130, p27Kip1 and p21Cip1 protein levels. In addition, DPP2-inhibited or down-regulated cells exhibit an increase in early G1/S progressors, with increases in the levels of retinoblastoma (pRb), p107 and cyclin D proteins. Furthermore, decrease of DPP2 activity leads to an increase in c-Myc and a decrease in Bcl-2, two events that have been associated with apoptosis induction. This apoptosis by DPP2 down-regulation is prevented in p53-/- cells or by ectopic expression of proteins that suppress p53 or c-Myc activity. Thus, DPP2 is essential for maintaining lymphocytes and fibroblasts in G0, and its inhibition results in apoptosis mediated by induction of c-Myc and p53.  相似文献   

13.
14.
15.
To investigate the function of the Rb-related p107 gene, a null mutation in p107 was introduced into the germ line of mice and bred into a BALB/cJ genetic background. Mice lacking p107 were viable and fertile but displayed impaired growth, reaching about 50% of normal weight by 21 days of age. Mutant mice exhibited a diathetic myeloproliferative disorder characterized by ectopic myeloid hyperplasia in the spleen and liver. Embryonic p107−/− fibroblasts and primary myoblasts isolated from adult p107−/− mice displayed a striking twofold acceleration in doubling time. However, cell sort analysis indicated that the fraction of cells in G1, S, and G2 was unaltered, suggesting that the different phases of the cell cycle in p107−/− cells was uniformly reduced by a factor of 2. Western analysis of cyclin expression in synchronized p107−/− fibroblasts revealed that expression of cyclins E and A preceded that of D1. Mutant embryos expressed approximately twice the normal level of Rb, whereas p130 levels were unaltered. Lastly, mutant mice reverted to a wild-type phenotype following a single backcross with C57BL/6J mice, suggesting the existence of modifier genes that have potentially epistatic relationships with p107. Therefore, we conclude that p107 is an important player in negatively regulating the rate of progression of the cell cycle, but in a strain-dependent manner.  相似文献   

16.
The involvement of the retinoblastoma gene product (Rb) and its family members (p107 and p130) in cell cycle exit and terminal differentiation of neural precursor cells has been demonstrated in vitro. To investigate the roles of Rb and p107 in growth, differentiation and apoptosis in the developing and mature cerebellum, we selectively inactivated either Rb alone or in combination with p107 in cerebellar precursor cells or in Purkinje cells. In our mouse models, we show that (1) Rb is required for differentiation, cell cycle exit and survival of granule cell precursors; (2) p107 can not fully compensate for the loss of Rb function in granule cells; (3) Rb and p107 are not required for differentiation and survival of Purkinje cells during embryonic and early postnatal development; (4) Rb function in Purkinje cells is cell autonomous; and (5) loss of Rb deficient CNS precursor cells is mediated by p53-independent apoptosis.  相似文献   

17.
18.
The function of retinoblastoma protein (pRb) in the regulation of small intestine epithelial cell homeostasis has been challenged by several groups using various promoter-based Cre transgenic mouse lines. Interestingly, different pRb deletion systems yield dramatically disparate small intestinal phenotypes. These findings confound the function of pRb in this dynamic tissue. In this study, Villin-Cre transgenic mice were crossed with Rb (flox/flox) mice to conditionally delete pRb protein in small intestine enterocytes. We discovered a novel hyperplasia phenotype as well as ectopic cell cycle reentry within villus enterocytes in the small intestine. This phenotype was not seen in other pRb family member (p107 or p130) null mice. Using a newly developed crypt/villus isolation method, we uncovered that expression of pRb was undetectable, whereas proliferating cell nuclear antigen, p107, cyclin E, cyclin D3, Cdk2, and Cdc2 were dramatically increased in pRb-deficient villus cells. Cyclin A, cyclin D1, cyclin D2, and Cdk4/6 expression was not affected by absent pRb expression. pRb-deficient villus cells appeared capable of progressing to mitosis but with higher rates of apoptosis. However, the cycling villus enterocytes were not completely differentiated as gauged by significant reduction of intestinal fatty acid-binding protein expression. In summary, pRb, but not p107 or p130, is required for maintaining the postmitotic villus cell in quiescence, governing the expression of cell cycle regulatory proteins, and completing of absorptive enterocyte differentiation in the small intestine.  相似文献   

19.
20.
Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号