首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
为了探讨绿色荧光蛋白标记的红色酵母D 氨基酸氧化酶 (DAAO)基因在人宫颈癌细胞 (HeLa细胞 )中的表达及其功能 ,采用基因重组技术构建了含有CMV启动子和EGFP、DAAO基因开放阅读框 (ORF)的真核表达载体 pIRES DAAO。脂质体法转染HeLa细胞 ,荧光显微镜下观察转染细胞中绿色荧光蛋白的表达 ,流式细胞术分析转染效率并筛选荧光阳性细胞 ,命名为HeLa D。以不同浓度的前药D Ala处理HeLa D细胞 ,MTT法检测细胞存活率。结果显示 ,荧光显微镜下可见绿色荧光蛋白在HeLa D细胞中表达 ,流式细胞术成功筛选出HeLa D细胞。前药D Ala能明显杀伤HeLa D细胞。结果表明 ,EGFP可作为报告基因快速筛选DAAO表达载体转染的细胞 ,DAAO/D Ala自杀基因系统可进一步用于肿瘤的基因治疗研究  相似文献   

2.
硅纳米颗粒作为基因转染载体的研究   总被引:7,自引:0,他引:7  
通过不同浓度的NaCl、NaI修饰硅纳米颗粒,用琼脂糖凝胶电泳分析硅纳米颗粒与DNA结合力及对DNA的保护作用,同时用绿色荧光蛋白基因作报告基因,以硅纳米颗粒作为基因转染的载体,转染HT1080细胞。经电镜观察证实硅纳米颗粒进入细胞内;硅纳米颗粒与DNA结合后,能对DNA起保护作用;并且硅颗粒作为基因转染的载体,将绿色荧光蛋白基因导入HT1080细胞,用荧光显微镜观察到发绿色荧光的细胞。结果表明,硅纳米颗粒可作为基因转染的载体。  相似文献   

3.
目的:构建绿色荧光蛋白和海肾荧光素酶共同高效表达的双报告基因真核表达载体。方法:将增强型绿色荧光蛋白基因和海肾荧光素酶基因以昆虫病毒T2A序列相连接而后克隆进入pcDNA3.1(-)质粒,构建双报告基因真核表达载体。将该载体转染至COS-7细胞,通过荧光显微镜观察、照度计定量分析检测绿色荧光蛋白和海肾荧光素酶生物活性,Western Bolt检测T2A序列自剪切效率。结果:双报告基因真核表达载体能够同时表达非融合的绿色荧光蛋白和海肾荧光素酶,与单独表达载体产物具有相似的生物活性和表达效率。结论:双报告基因真核表达载体建立成功,为基因表达调控等相关领域研究提供辅助工具。  相似文献   

4.
磁性纳米颗粒作为载体在基因转染中的研究进展   总被引:1,自引:0,他引:1  
磁性纳米颗粒具有很强的结合、浓缩与保护DNA的作用,具有超顺磁性、较高的安全性和低的免疫原性,可以结合大片段DNA,在外加磁场的作用下可实现安全、高效的基因靶向性运输,提高外源基因的转染效率。由于磁性纳米颗粒的独特性质,使得其作为非病毒载体在基因治疗中的应用进展迅速。我们简要介绍磁性纳米材料的特点、种类及结构,磁性纳米基因载体的特点,以及磁性纳米颗粒作为载体在基因转染中的应用情况。  相似文献   

5.
左广锋  陈绍良  徐艳  肖杭 《生物磁学》2011,(6):1068-1071
目的:构建含有人HCN2基因的真核表达载体,并观察在人胚胎肾细胞(HEK293)中的表达情况。方法:对人HCN2基因全序列进行分析,进行oligo设计,通过PCR,扩增HCN2全长cDNA,通过双酶切(XhoI和BamHI)装入真核表达载体pIRES2-EGFP中,脂质体法转染入HEK293细胞中,利用真核表达载体中带有绿色荧光蛋白GFP报告基因,对转染效率进行监测,采用反转录-聚合酶链反应检测HCN2 mRNA表达,全细胞膜片钳技术检测HCN2通道电流。结果:测序及酶切结果表明HCN2基因正确,荧光显微镜下,转染细胞观察到绿色荧光,反转录-聚合酶链反应检测到HCN2 mRNA表达,膜片钳检测到hHCN2基因编码的通道电流。结论:成功地构建了HCN2真核表达载体并进行了起搏通道HCN2基因的异源性表达。  相似文献   

6.
目的:构建含有人HCN2基因的真核表达载体,并观察在人胚胎肾细胞(HEK293)中的表达情况。方法:对人HCN2基因全序列进行分析,进行oligo设计,通过PCR,扩增HCN2全长cDNA,通过双酶切(XhoI和BamHI)装入真核表达载体pIRES2-EGFP中,脂质体法转染入HEK293细胞中,利用真核表达载体中带有绿色荧光蛋白GFP报告基因,对转染效率进行监测,采用反转录-聚合酶链反应检测HCN2 mRNA表达,全细胞膜片钳技术检测HCN2通道电流。结果:测序及酶切结果表明HCN2基因正确,荧光显微镜下,转染细胞观察到绿色荧光,反转录-聚合酶链反应检测到HCN2 mRNA表达,膜片钳检测到hHCN2基因编码的通道电流。结论:成功地构建了HCN2真核表达载体并进行了起搏通道HCN2基因的异源性表达。  相似文献   

7.
目的:慢病毒载体是一种逆转录病毒载体,可将目的基因稳定整合入宿主基因组、感染非分裂期细胞,现已成为基因工程中转移目的基因的理想载体.软骨细胞可定向成软骨,是软骨基因工程中理想的靶细胞.本文以绿色荧光蛋白(green fluorescent protein,GFP)基因作为报告基因,探讨慢病毒介导的GFP基因转染大鼠膝关节软骨细胞的最适病毒感染复数(multiplicity of infection,MOI)、转染效率,以及转染GFP后是否对关节软骨细胞增殖代谢活动产生影响,为下一步实验提供理论基础.方法:常规大鼠膝关节软骨细胞原代、传代培养,应用携带GFP基因的慢病毒载体转染软骨细胞.在软骨细胞培养状态最佳时,以不同MOI值(分别设定为10,20,50,100)进行慢病毒转染实验,96h后在荧光显微镜下观察GFP在软骨细胞中的表达情况,确定最佳MOI值,流式细胞术检测慢病毒转染效率,MTT法绘制生长曲线比较携带GFP基因的慢病毒对软骨细胞增殖能力的影响,以评价GFP慢病毒载体系统转染大鼠膝关节软骨细胞的高效性和稳定性.结果:置荧光显微镜下,转染96 h后,部分软骨细胞可见绿色荧光.其中当MOI=50时,慢病毒转染软骨细胞效率最高,且对软骨细胞生长状态无显著性影响,GFP阳性细胞率(转染效率)为90.1%,MTT法测生长曲线结果显示,与未转染GFP基因的对照组相比,慢病毒转染组对软骨细胞增殖活性没有显著影响(P>0.05).结论:慢病毒介导的GFP基因转染大鼠膝关节软骨细胞的最适MOI值为50,携带GFP基因的慢病毒能高效转染大鼠膝关节软骨细胞并稳定表达,同时不影响其生物学特性,为将来应用慢病毒载体对大鼠软骨细胞进行基因改造提供了理论基础,也可作为可靠的转基因研究示踪方法,为进一步研究关节软骨疾病的治疗提供了有力依据.  相似文献   

8.
目的:构建pEGFP-C3-TCR BV12-3表达载体并初步研究其抗肿瘤作用。方法:TCR BV12-3基因片段从pGEM-T-TCR BV12-3载体上酶切并克隆至pEGFP-C3载体中,通过脂质体将pEGFP-C3-TCR BV12-3表达载体转染外周血单个核细胞(PBMCs),48小时后荧光显微镜观察转染效率。PBMCs细胞、pEGFP-C3载体转染的PBMCs细胞、pEGFP-C3-TCR BV12-3表达载体转染的PBMCs细胞分别与肝癌细胞BEL-7402和宫颈癌细胞HeLa共培养24 h,显微镜观察肿瘤细胞的生长情况。结果:测序证实TCR BV12-3基因片段成功亚克隆至pEGFP-C3载体中,荧光显微镜证实重组体转染PBMCs细胞48 h后可有效表达绿色荧光。显微镜观察发现pEGFP-C3-TCR BV12-3载体转染的PBMCs对肝癌细胞有杀伤作用,但对宫颈癌杀伤作用不明显。结论:成功构建pEGFP-C3-TCR BV12-3表达载体,初步证实TCRBV12-3对肝癌细胞有杀伤作用。  相似文献   

9.
目的构建在肝细胞中特异性表达SV40T抗原的表达载体并进行鉴定。方法通过Gateway技术构建SV40T慢病毒载体p LV-Puro-ALBSV40T并通过菌落PCR筛选鉴定,将其与辅助质粒p LV-helper1、p LV-helpe2、p LV-helper3共转染293T细胞包装慢病毒并在荧光显微镜下进行滴度值测定。用SV40T慢病毒载体转染肝癌Hep G2细胞,并在荧光显微镜下行转染效率测定;实时荧光定量PCR检测转染细胞SV40T基因的表达水平。结果 Gateway技术构建的慢病毒载体p LV-Puro-ALBSV40T经鉴定完全正确;慢病毒包装48 h后视野下可见清晰绿色荧光表达,病毒滴度为1.73×108 TU/m L。慢病毒载体成功转染Hep G2细胞,转染效率约70%,并通过RT-PCR检测SV40T表达水平明显升高。  相似文献   

10.
用表达T7RNA聚合酶细胞系拯救麻疹病毒微复制子   总被引:1,自引:0,他引:1  
构建稳定表达T7RNA聚合酶的细胞系,用于提高拯救麻疹病毒微复制子效率.PCR扩增T7RNA聚合酶基因,克隆到真核表达载体,转染Vero细胞,用G418筛选到稳定表达的细胞株Vero/pcDNA3-T7.用Westernblotting证明了T7RNA聚合酶在细胞中的表达.将T7启动子控制绿色荧光蛋白表达的质粒转染该细胞后,绿色荧光蛋白在细胞株中得到表达.反向插入报告基因的微复制子转染感染麻疹病毒的Vero/pcDNA3-T7细胞后,细胞中能够检测到报告基因的表达.用细胞系取代痘苗病毒系统,可以提高拯救效率.  相似文献   

11.
通过扫描电子显微镜和Zeta电位仪对磁性纳米颗粒的形貌、粒径、表面电位等进行了表征。利用凝胶电泳阻滞试验分析磁性纳米颗粒与DNA的结合情况,研究磁性纳米颗粒对DNA的保护效果,运用MTT和流式细胞术分析磁性纳米颗粒对细胞的毒性。以绿色荧光蛋白基因为报告基因进行293T细胞的转染,研究磁性纳米颗粒与质粒DNA不同比例条件下对293T细胞的转染效率,并与脂质体(Lipofectamine2000)介导的转染进行比较分析。结果表明,磁性纳米颗粒与DNA可以稳定结合,可以保护DNA免受酶的消化作用,当磁性纳米颗粒与DNA比为1 1时,转染效率最高,优于脂质体(Lipotamine2000)介导的转染,且对细胞的毒害作用小于Lipotamine2000。  相似文献   

12.
何倩倩  杜子秀  何沐  臧怡  胡搌华  王菲  金拓 《生物磁学》2011,(12):2204-2206
目的:研究以乙二醛为连接剂的聚乙烯亚胺(Polyethyleneimine,PEI)衍生物Polyimine-PEI对非洲绿猴肾癌细胞COS-7的转染活性和细胞毒性的影响。方法:以荧光素酶质粒为报告基因,研究高分子与DNA的复合物在COS-7细胞的转染活性,用MTT方法研究高分子对COS-7细胞的毒性。结果:COS-7细胞实验显示,Polyimine-PEI具有很低细胞毒性,其毒性显著低于PEI25kDa,同时也具有高效输送质粒的能力。结论:Polyimine-PEI是一种新型的高效,低毒在基因治疗领域有相当前景的非病毒载体。  相似文献   

13.
New approaches to increase the efficiency of non-viral gene delivery are still required. Here we report a simple approach that enhances gene delivery using permanent and pulsating magnetic fields. DNA plasmids and novel DNA fragments (PCR products) containing sequence encoding for green fluorescent protein were coupled to polyethylenimine coated superparamagnetic nanoparticles (SPIONs). The complexes were added to cells that were subsequently exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency 40 times more than in cells not exposed to the magnetic field. The transfection efficiency was highest when the nanoparticles were sedimented on the permanent magnet before the application of the pulsating field, both for small (50 nm) and large (200–250 nm) nanoparticles. The highly efficient gene transfer already within 5 min shows that this technique is a powerful tool for future in vivo studies, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.  相似文献   

14.
Gene delivery technologies to introduce foreign genes into highly differentiated mammalian cells have improved significantly over the last few decades. Relatively new techniques such as magnetic nanoparticle-based gene transfection technology are showing great promise in terms of its high transfection efficiency and wide-ranging research applications. We have developed a novel gene delivery technique, which uses magnetic nanoparticles moving under the influence of an oscillating magnetic array. Herein we successfully introduced short interfering RNA (siRNA) against green fluorescent protein (GFP) or actin into stably-transfected GFP-HeLa cells or wild-type HeLa and rat aortic smooth muscle cells, respectively. This gene silencing technique occurred in a dose- and cell density- dependent manner, as reflected using fluorescence intensity and adhesion assays. Furthermore, using endocytosis inhibitors, we established that these magnetic nanoparticle-nucleic acid complexes, moving across the cell surface under the influence of an oscillating magnet array, enters into the cells via the caveolae-mediated endocytic pathway.  相似文献   

15.
We developed a new magnetic nanovector to improve the efficiency and targeting of transgene therapy for oral squamous cell carcinoma (OSCC). Positively charged polymer PEI-modified Fe3O4 magnetic nanoparticles were tested as gene transfer vectors in the presence of a magnetic field. The Fe3O4 nanoparticles were prepared by a co-precipitation method and had good dispersibility in water. These nanoparticles modified by PEI were combined with negatively charged pACTERT-EGFP via electrostatic interaction. The transfection efficiency of the magnetic nano-gene vector with the magnetic field was determined by a fluorescence-inverted microscope and flow cytometry. The results showed significant improvement compared with the control group (p < 0.05). The magnetic complexes also exhibited up to 6-times higher transfection efficiency compared with commonly used PEI or lipofectin. On the basis of these results, the antitumor effect with suicide gene therapy using pACTERT-TRAIL in vitro and vivo was evaluated. In vitro apoptosis was determined with the Annexin V-FITC Apoptosis Detection Kit. The results suggested that PEI-modified Fe3O4 nanoparticles could mediate the killing of Tca83 cells. Furthermore, treatment with pACTERT-TRAIL delivered by magnetic nanoparticles showed a significant cytostatic effect through the induction of apoptosis in a xenograft model. This indicates that magnetic nano-gene vectors could improve the transgene efficiency for Tca83 cells and could exhibit antitumor functions with the plasmid pACTERT-TRAIL. This may be a new way to treat OSCC.  相似文献   

16.
Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.  相似文献   

17.
When covalently bound to an appropriate ligand, iron oxide nanoparticles can bind to a specific target of interest. This interaction can be detected through changes in the solution's spin-spin relaxation times (T2) via magnetic relaxation measurements. In this report, a strategy of molecular mimicry was used in order to identify targeting ligands that bind to the cholera toxin B subunit (CTB). The cellular CTB-receptor, ganglioside GM1, contains a pentasaccharide moiety consisting in part of galactose and glucose units. We therefore predicted that CTB would recognize carbohydrate-conjugated iron oxide nanoparticles as GM1 mimics, thus producing a detectable change in the T2 relaxation times. Magnetic relaxation experiments demonstrated that CTB interacted with the galactose-conjugated nanoparticles. This interaction was confirmed via surface plasmon resonance studies using either the free or nanoparticle-conjugated galactose molecule. The galactose-conjugated nanoparticles were then used as CTB sensors achieving a detection limit of 40 pM. Via magnetic relaxation studies, we found that CTB also interacted with dextran-coated nanoparticles, and surface plasmon resonance studies also confirmed this interaction. Additional experiments demonstrated that the dextran-coated nanoparticle can also be used as CTB sensors and that dextran can prevent the internalization of CTB into GM1-expressing cells. Our work indicates that magnetic nanoparticle conjugates and magnetic relaxation detection can be used as a simple and fast method to identify targeting ligands via molecular mimicry. Furthermore, our results show that the dextran-coated nanoparticles represent a low-cost approach for CTB detection.  相似文献   

18.
For the purpose of successfully monitoring labeled cells, optimum labeling efficiency without any side effect is a prerequisite. Magnetic cellular imaging is a new and growing field that allows the visualization of implanted cells in vivo. Herein, superparamagnetic iron oxide (SPIO) nanoparticles were conjugated with a non-toxic protein transduction domain (PTD), identified by the authors and termed low molecular weight protamine (LMWP), to generate efficient and non-toxic cell labeling tools. The cells labeled with LMWP-SPIO presented the highest iron content compared to those labeled with naked SPIO and the complex of SPIO with poly-l-lysine, which is currently used as a transfection agent. In addition to the iron content assay, Prussian staining and confocal observation demonstrated the highest intracellular LMWP-SPIO presence, and the labeling procedure did not alter the cell differentiation capacity of mesenchymal stem cells. Taken together, cell permeable magnetic nanoparticles conjugated with LMWP can be suggested as labeling tools for efficient magnetic imaging of transplanted cells.  相似文献   

19.
Visualization and quantification of inflammatory processes is of high importance for early diagnosis of a multitude of diseases. Magnetic resonance imaging (MRI) using iron oxide (FeO) nanoparticles as contrast agents allows the study of macrophage infiltration during inflammation in a variety of tissues. Macrophages are effectors of the immune response, their appearance being orchestrated by activated T lymphocytes. Therefore, tracking of labeled T lymphocytes, which initiate the immune process, should enable earlier detection of tissue inflammation. In this study, we investigate the feasibility of specifically labeling harvested T cells by using dextran-coated FeO nanoparticles and commonly available transfection agents (TAs). Physicochemical properties of the newly formed FeO/TA vesicles were determined as well as their cell toxicity and their T cell activation potential. The labeling efficiency of each FeO/TA combination was evaluated by measuring the transverse MRI relaxation rate R(2) by X-ray spectroscopy and magnetic selection. Toxicity and labeling efficacy differed significantly among TAs. The best results were achieved by using polyamine TAs and in particular by using poly-l-lysine at a concentration of 1.5 microg/mL administered in combination with 22.5 microg iron/mL. By using this protocol, up to 60% of harvested T cells could be labeled. Microscopic investigation revealed FeO/TA nanoparticles not only localized within the cytoplasma of the cells but also sticking to the outer membrane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号