首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast Pdr5 multidrug transporter is an important member of the ATP-binding cassette superfamily of proteins. We describe a novel mutation (S558Y) in transmembrane helix 2 of Pdr5 identified in a screen for suppressors that eliminated Pdr5-mediated cycloheximide hyper-resistance. Nucleotides as well as transport substrates bind to the mutant Pdr5 with an affinity comparable with that for wild-type Pdr5. Wild-type and mutant Pdr5s show ATPase activity with comparable K(m)((ATP)) values. Nonetheless, drug sensitivity is equivalent in the mutant pdr5 and the pdr5 deletion. Finally, the transport substrate clotrimazole, which is a noncompetitive inhibitor of Pdr5 ATPase activity, has a minimal effect on ATP hydrolysis by the S558Y mutant. These results suggest that the drug sensitivity of the mutant Pdr5 is attributable to the uncoupling of NTPase activity and transport. We screened for amino acid alterations in the nucleotide-binding domains that would reverse the phenotypic effect of the S558Y mutation. A second-site mutation, N242K, located between the Walker A and signature motifs of the N-terminal nucleotide-binding domain, restores significant function. This region of the nucleotide-binding domain interacts with the transmembrane domains via the intracellular loop-1 (which connects transmembrane helices 2 and 3) in the crystal structure of Sav1866, a bacterial ATP-binding cassette drug transporter. These structural studies are supported by biochemical and genetic evidence presented here that interactions between transmembrane helix 2 and the nucleotide-binding domain, via the intracellular loop-1, may define at least part of the translocation pathway for coupling ATP hydrolysis to drug transport.  相似文献   

2.
Pdr5 is the founding member of a large subfamily of evolutionarily distinct, clinically important fungal ABC transporters containing a characteristic, deviant ATP-binding site with altered Walker A, Walker B, Signature (C-loop), and Q-loop residues. In contrast to these motifs, the D-loops of the two ATP-binding sites have similar sequences, including a completely conserved aspartate residue. Alanine substitution mutants in the deviant Walker A and Signature motifs retain significant, albeit reduced, ATPase activity and drug resistance. The D-loop residue mutants D340A and D1042A showed a striking reduction in plasma membrane transporter levels. The D1042N mutation localized properly had nearly WT ATPase activity but was defective in transport and was profoundly hypersensitive to Pdr5 substrates. Therefore, there was a strong uncoupling of ATPase activity and drug efflux. Taken together, the properties of the mutants suggest an additional, critical intradomain signaling role for deviant ATP-binding sites.  相似文献   

3.
The cytoplasmic membrane proteins CvaB and CvaA and the outer membrane protein TolC constitute the bacteriocin colicin V secretion system in Escherichia coli. CvaB functions as an ATP-binding cassette transporter, and its C-terminal domain (CTD) contains typical motifs for the nucleotide-binding and Walker A and B sites and the ABC signature motif. To study the role of the CvaB CTD in the secretion of colicin V, a truncated construct of this domain was made and overexpressed. Different forms of the CvaB CTD were found during purification and identified as monomer, dimer, and oligomer forms by gel filtration and protein cross-linking. Nucleotide binding was shown to be critical for CvaB CTD dimerization. Oligomers could be converted to dimers by nucleotide triphosphate-Mg, and nucleotide release from dimers resulted in transient formation of monomers, followed by oligomerization and aggregation. Site-directed mutagenesis showed that the ABC signature motif was involved in the nucleotide-dependent dimerization. The spatial proximity of the Walker A site and the signature motif was shown by disulfide cross-linking a mixture of the A530C and L630C mutant proteins, while the A530C or L630C mutant protein did not dimerize on its own. Taken together, these results indicate that the CvaB CTD formed a nucleotide-dependent head-to-tail dimer.  相似文献   

4.
Multidrug resistance (MDR) to different cytotoxic compounds in the yeast Saccharomyces cerevisiae can arise from overexpression of the Pdr5 (Sts1, Ydr1, or Lem1) ATP-binding cassette (ABC) multidrug transporter. We have raised polyclonal antibodies recognizing the yeast Pdr5 ABC transporter to study its biogenesis and to analyze the molecular mechanisms underlying MDR development. Subcellular fractionation and indirect immunofluorescence experiments showed that Pdr5 is localized in the plasma membrane. In addition, pulse-chase radiolabeling of cells and immunoprecipitation indicated that Pdr5 is a short-lived membrane protein with a half-life of about 60 to 90 min. A dramatic metabolic stabilization of Pdr5 was observed in delta pep4 mutant cells defective in vacuolar proteinases, and indirect immunofluorescence showed that Pdr5 accumulates in vacuoles of stationary-phase delta pep4 mutant cells, demonstrating that Pdr5 turnover requires vacuolar proteolysis. However, Pdr5 turnover does not require a functional proteasome, since the half-life of Pdr5 was unaffected in either pre1-1 or pre1-1 pre2-1 mutants defective in the multicatalytic cytoplasmic proteasome that is essential for cytoplasmic protein degradation. Immunofluorescence analysis revealed that vacuolar delivery of Pdr5 is blocked in conditional end4 endocytosis mutants at the restrictive temperature, showing that endocytosis delivers Pdr5 from the plasma membrane to the vacuole.  相似文献   

5.
The VirB11 ATPase is a putative component of the transport machinery responsible for directing the export of nucleoprotein particles (T complexes) across the Agrobacterium tumefaciens envelope to susceptible plant cells. Fractionation and membrane treatment studies showed that approximately 30% of VirB11 partitioned as soluble protein, whereas the remaining protein was only partially solubilized with urea from cytoplasmic membranes of wild-type strain A348 as well as a Ti-plasmidless strain expressing virB11 from an IncP replicon. Mutations in virB11 affecting protein function were mapped near the amino terminus (Q6L, P13L, and E25G), just upstream of a region encoding a Walker A nucleotide-binding site (F154H;L155M), and within the Walker A motif (P170L, K175Q, and delta GKT174-176). The K175Q and delta GKT174-176 mutant proteins partitioned almost exclusively with the cytoplasmic membrane, suggesting that an activity associated with nucleotide binding could modulate the affinity of VirB11 for the cytoplasmic membrane. The virB11F154H;L155M allele was transdominant over wild-type virB11 in a merodiploid assay, providing strong evidence that at least one form of VirB11 functions as a homo- or heteromultimer. An allele with a deletion of the first half of the gene, virB11 delta1-156, was transdominant in a merodiploid assay, indicating that the C-terminal half of VirB11 contains a protein interaction domain. Products of both virB11 delta1-156 and virB11 delta158-343, which synthesizes the N-terminal half of VirB11, associated tightly with the A. tumefaciens membrane, suggesting that both halves of VirB11 contain membrane interaction determinants.  相似文献   

6.
P-glycoprotein is an ATP-dependent drug-efflux pump which can transport a diverse range of structurally and functionally unrelated substrates across the plasma membrane. Overexpression of this protein may result in multidrug resistance and is a major cause of the failure of cancer chemotherapy. The most commonly used photoreactive substrate is iodoarylazidoprazosin. Its binding domains within the P-glycoprotein have so far been inferred from indirect methods such as epitope mapping. In this study, the binding sites were refined and relocalized by direct analysis of photolabeled peptides. P-glycoprotein-containing plasma membrane vesicles of Chinese hamster ovary B30 cells were photoaffinity-labeled with iodoarylazidoprazosin. After chemical cleavage behind tryptophan residues or enzymatic cleavage behind lysine residues, the resulting 125I-labeled peptides were separated by tricine/PAGE and HPLC and subjected to Edman sequencing. The major photoaffinity binding sites of iodoarylazidoprazosin were localized in the amino-acid regions 248-312 [transmembrane segment (TM)4 to TM5], 758-800 (beyond TM7 to beyond TM8) and 1160-1218 (after the Walker A motif of the second nucleotide-binding domain). Therefore the binding pocket of iodoarylazidoprazosin is made up of at least three binding epitopes.  相似文献   

7.
At least six rust resistance specificities (P and P1 to P5) map to the complex P locus in flax. The P2 resistance gene was identified by transposon tagging and transgenic expression. P2 is a member of a small multigene family and encodes a protein with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains and an N-terminal Toll/interleukin-1 receptor (TIR) homology domain, as well as a C-terminal non-LRR (CNL) domain of approximately 150 amino acids. A related CNL domain was detected in almost half of the predicted Arabidopsis TIR-NBS-LRR sequences, including the RPS4 and RPP1 resistance proteins, and in the tobacco N protein, but not in the flax L and M proteins. Presence or absence of this domain defines two subclasses of TIR-NBS-LRR resistance genes. Truncations of the P2 CNL domain cause loss of function, and evidence for diversifying selection was detected in this domain, suggesting a possible role in specificity determination. A spontaneous rust-susceptible mutant of P2 contained a G-->E amino acid substitution in the GLPL motif, which is conserved in the NBS domains of plant resistance proteins and the animal cell death control proteins APAF-1 and CED4, providing direct evidence for the importance of this motif in resistance gene function. A P2 homologous gene isolated from a flax line expressing the P resistance specificity encodes a protein with only 10 amino acid differences from the P2 protein. Chimeric gene constructs indicate that just six of these amino acid changes, all located within the predicted beta-strand/beta-turn motif of four LRR units, are sufficient to alter P2 to the P specificity.  相似文献   

8.
The pleiotropic drug resistance protein, Pdr5p, is an ATP-binding cassette transporter of the plasma membrane of Saccharomyces cerevisiae. Overexpression of Pdr5p results in increased cell resistance to a variety of cytotoxic compounds, a phenotype reminiscent of the multiple drug resistance seen in tumor cells. Pdr5p and two other yeast ATP-binding cassette transporters, Snq2p and Yor1p, were found to be phosphorylated on serine residues in vitro. Mutations in the plasma membrane-bound casein kinase I isoforms, Yck1p and Yck2p, abolished Pdr5p phosphorylation and modified the multiple drug resistance profile. We showed Pdr5p to be ubiquitylated when overexpressed. However, instability of Pdr5p was only seen in Yck1p- and Yck2p-deficient strains, in which it was degraded in the vacuole via a Pep4p-dependent mechanism. Our results suggest that casein kinase I activity is required for membrane trafficking of Pdr5p to the cell surface. In the absence of functional Yck1p and Yck2p, Pdr5p is transported to the vacuole for degradation.  相似文献   

9.
Pleotropic drug resistant protein 5 (Pdr5p) is a plasma membrane ATP-binding cassette (ABC) transporter and the major drug efflux pump in Saccharomyces cerevisiae. The Pdr5p family of fungal transporters possesses a number of structural features significantly different from other modeled or crystallized ABC transporters, which include a reverse topology, an atypical ATP-binding site, a very low sequence similarity in the transmembrane section and long linkers between domains. These features present a considerable hurdle in molecular modeling studies of these important transporters. Here, we report the creation of an atomic model of Pdr5p based on a combination of homology modeling and ab initio methods, incorporating information from consensus transmembrane segment prediction, residue lipophilicity, and sequence entropy. Reported mutations in the transmembrane substrate-binding pocket that altered drug-resistance were used to validate the model, and one mutation that changed the communication pattern between transmembrane and nucleotide-binding domains was used in model improvement. The predictive power of the model was demonstrated experimentally by the increased sensitivity of yeast mutants to clotrimazole having alanine substitutions for Thr1213 and Gln1253, which are predicted to be in the substrate-binding pocket, without reducing the amount of Pdr5p in the plasma membrane. The quality and reliability of our model are discussed in the context of various approaches used for modeling different parts of the structure.  相似文献   

10.
Pdr5p, the major multidrug exporter in Saccharomyces cerevisiae, is a member of the ATP-binding cassette (ABC) superfamily. Pdr5p shares similar mechanisms of substrate recognition and transport with the human MDR1-Pgp, despite an inverted topology of transmembrane and ATP-binding domains. The hexahistidine-tagged Pdr5p multidrug transporter was highly overexpressed in yeast strains where other ABC genes have been deleted. After solubilization and purification, the 160-kDa recombinant Pdr5p has been reconstituted into a lipid bilayer. Controlled detergent removal from Pdr5p-lipid-detergent micelles allowed the production of peculiar square-shaped particles coexisting with liposomes and proteoliposomes. These particles having 11 nm in side were well suited for single particle analysis by electron microscopy. From such analysis, a computed volume has been determined at 25-A resolution, giving insight into the structural organization of Pdr5p. Comparison with the reported structures of different bacterial ABC transporters was consistent with a dimeric organization of Pdr5p in the square particles. Each monomer was composed of three subregions corresponding to a membrane region of about 50 A in height that joins two well separated protruding stalks of about 40 A in height, ending each one with a cytoplasmic nucleotide-binding domain (NBD) lobe of about 50-60 A in diameter. The three-dimensional reconstruction of Pdr5p revealed a close arrangement and a structural asymmetric organization of the two NBDs that appeared oriented perpendicularly within a monomer. The existence of different angular positions of the NBDs, with respect to the stalks, suggest rotational movements during the catalytic cycle.  相似文献   

11.
BACKGROUND: The 170 kDa protein MukB has been implicated in ATP-dependent chromosome partitioning during cell division in Escherichia coli. MukB shares its dimeric structure and domain architecture with the ubiquitous family of SMC (structural maintenance of chromosomes) proteins that facilitate similar functions. The N-terminal domain of MukB carries a putative Walker A nucleotide-binding region and the C-terminal domain has been shown to bind to DNA. Mutant phenotypes and a domain arrangement similar to motor proteins that move on microtubules led to the suggestion that MukB might be a motor protein acting on DNA. RESULTS: We have cloned, overexpressed and crystallized a 26 kDa protein consisting of 227 N-terminal residues of MukB from E. coli. The structure has been solved using multiple anomalous dispersion and has been refined to 2.2 A resolution. The N-terminal domain of MukB has a mixed alpha/beta fold with a central six-stranded antiparallel beta sheet. The putative nucleotide-binding loop, which is part of an unexpected helix-loop-helix motif, is exposed on the surface and no nucleotide-binding pocket could be detected. CONCLUSIONS: The N-terminal domain of MukB has no similarity to the kinesin family of motor proteins or to any other nucleotide-binding protein. Together with the finding of the exposed Walker A motif this observation supports a model in which the N- and C-terminal domains come together in the dimer of MukB to form the active site. Conserved residues on one side of the molecule delineate a region of the N-terminal domain that is likely to interact with the C-terminal domain.  相似文献   

12.
13.
The type VI secretion system (T6SS) with diversified functions is widely distributed in pathogenic Proteobacteria. The IcmF (intracellular multiplication protein F) family protein TssM is a conserved T6SS inner membrane protein. Despite the conservation of its Walker A nucleotide-binding motif, the NTPase activity of TssM and its role in T6SS remain obscure. In this study, we characterized TssM in the plant pathogen Agrobacterium tumefaciens and provided the first biochemical evidence for TssM exhibiting ATPase activity to power the secretion of the T6SS hallmark protein, hemolysin-coregulated protein (Hcp). Amino acid substitutions in the Walker A motif of TssM caused reduced ATP binding and hydrolysis activity. Importantly, we discovered the Walker B motif of TssM and demonstrated that it is critical for ATP hydrolysis activity. Protein-protein interaction studies and protease susceptibility assays indicated that TssM undergoes an ATP binding-induced conformational change and that subsequent ATP hydrolysis is crucial for recruiting Hcp to interact with the periplasmic domain of the TssM-interacting protein TssL (an IcmH/DotU family protein) into a ternary complex and mediating Hcp secretion. Our findings strongly argue that TssM functions as a T6SS energizer to recruit Hcp into the TssM-TssL inner membrane complex prior to Hcp secretion across the outer membrane.  相似文献   

14.
The ATP-binding cassette (ABC) transporters are a large family of proteins responsible for the translocation of a variety of compounds across the membranes of both prokaryotes and eukaryotes. The inter-protein and intra-protein interactions in these traffic ATPases are still only poorly understood. In the present study we describe, for the first time, an extensive yeast two-hybrid (Y2H)-based analysis of the interactions of the cytoplasmic loops of the yeast pleiotropic drug resistance (Pdr) protein, Pdr5p, an ABC transporter of Saccharomyces cerevisiae. Four of the major cytosolic loops that have been predicted for this protein [including the two nucleotide-binding domain (NBD)-containing loops and the cytosolic C-terminal region] were subjected to an extensive inter-domain interaction study in addition to being used as baits to identify potential interacting proteins within the cell using the Y2H system. Results of these studies have revealed that the first cytosolic loop (CL1) – containing the first NBD domain – and also the C-terminal region of Pdr5p interact with several candidate proteins. The possibility of an interaction between the CL1 loops of two neighboring Pdr5p molecules was also indicated, which could possibly have implications for dimerization of this protein. Electronic Publication  相似文献   

15.
The intracellular targeting determinants of oxysterol binding protein (OSBP)-related protein 3 (ORP3) were studied using a series of truncated and point mutated constructs. The pleckstrin homology (PH) domain of ORP3 binds the phosphoinositide-3-kinase (PI3K) products, PI(3,4)P2 and PI(3,4,5)P3. A functional PH domain and flanking sequences are crucial for the plasma membrane (PM) targeting of ORP3. The endoplasmic reticulum (ER) targeting of ORP3 is regulated the by a FFAT motif (EFFDAxE), which mediates interaction with VAMP-associated protein (VAP)-A. The targeting function of the FFAT motif dominates over that of the PH domain. In addition, the exon 10/11 region modulates interaction of ORP3 with the ER and the nuclear membrane. Analysis of a chimeric ORP3:OSBP protein suggests that ligand binding by the C-terminal domain of OSBP induces allosteric changes that activate the N-terminal targeting modules of ORP3. Notably, over-expression of ORP3 together with VAP-A induces stacked ER membrane structures also known as organized smooth ER (OSER). Moreover, lipid starvation promotes formation of dilated peripheral ER (DPER) structures dependent on the ORP3 protein. Based on the present data, we introduce a model for the inter-relationships of the functional domains of ORP3 in the membrane targeting of the protein.  相似文献   

16.
Degradation of misfolded or unassembled proteins of the secretory pathway is an essential function of the quality control system of the Endoplasmic Reticulum (ER). Using yeast as a model organism we show that a mutated and therefore misfolded soluble lumenal protein carboxypeptidase yscY (CPY*), and a polytopic membrane protein, the ATP-binding cassette transporter Pdr5 (Pdr5*), are retrograde transported out of the ER and degraded via the cytoplasmic ubiquitin-proteasome system. Retrograde transport depends on an intact Sec61 translocon. Complete import of CPY* into the lumen of the ER requests a new targeting mechanism for retrograde transport of the malfolded enzyme through the Sec61 channel to occur. For soluble CPY*, but not for the polytopic membrane protein Pdr5* action of the ER-lumenal Hsp70 chaperone Kar2 is necessary to deliver the protein to the ubiquitin-proteasome machinery. Polyubiquitination of CPY* and Pdr5* by the ubiquitin conjugating enzymes Ubc6 and Ubc7 is crucial for degradation to occur. Also transport of CPY* out of the ER-lumen depends on ubiquitination. Newly discovered proteins of the ER membrane, Der1, Der3/Hrd1, and Hrd3 are specifically involved in the retrograde transport processes.  相似文献   

17.
The eukaryotic plasma membrane exhibits both asymmetric distribution of lipids between the inner and the outer leaflet and lateral segregation of membrane components within the plane of the bilayer. In budding yeast (Saccharomyces cerevisiae), maintenance of leaflet asymmetry requires P-type ATPases, which are proposed to act as inward-directed lipid translocases (Dnf1, Dnf2, and the associated protein Lem3), and ATP-binding cassette (ABC) transporters, which are proposed to act as outward-directed lipid translocases (Pdr5 and Yor1). The S. cerevisiae genome encodes two other Pdr5-related ABC transporters: Pdr10 (67% identity) and Pdr15 (75% identity). We report the first analysis of Pdr10 localization and function. A Pdr10-GFP chimera was located in discrete puncta in the plasma membrane and was found in the detergent-resistant membrane fraction. Compared to control cells, a pdr10∆ mutant was resistant to sorbate but hypersensitive to the chitin-binding agent Calcofluor White. Calcofluor sensitivity was attributable to a partial defect in endocytosis of the chitin synthase Chs3, while sorbate resistance was attributable to accumulation of a higher than normal level of the sorbate exporter Pdr12. Epistasis analysis indicated that Pdr10 function requires Pdr5, Pdr12, Lem3, and mature sphingolipids. Strikingly, Pdr12 was shifted to the detergent-resistant membrane fraction in pdr10∆ cells. Pdr10 therefore acts as a negative regulator for incorporation of Pdr12 into detergent-resistant membranes, a novel role for members of the ABC transporter superfamily.  相似文献   

18.
HPr kinase/phosphatase (HprK/P) is a key regulatory enzyme controlling carbon metabolism in Gram- positive bacteria. It catalyses the ATP-dependent phosphorylation of Ser46 in HPr, a protein of the phosphotransferase system, and also its dephosphorylation. HprK/P is unrelated to eukaryotic protein kinases, but contains the Walker motif A characteristic of nucleotide-binding proteins. We report here the X-ray structure of an active fragment of Lactobacillus casei HprK/P at 2.8 A resolution, solved by the multiwavelength anomalous dispersion method on a seleniated protein (PDB code 1jb1). The protein is a hexamer, with each subunit containing an ATP-binding domain similar to nucleoside/nucleotide kinases, and a putative HPr-binding domain unrelated to the substrate-binding domains of other kinases. The Walker motif A forms a typical P-loop which binds inorganic phosphate in the crystal. We modelled ATP binding by comparison with adenylate kinase, and designed a tentative model of the complex with HPr based on a docking simulation. The results confirm that HprK/P represents a new family of protein kinases, first identified in bacteria, but which may also have members in eukaryotes.  相似文献   

19.
Pdr5 is a plasma membrane-bound ABC transporter from Saccharomyces cerevisiae and is involved in the phenomenon of resistance against xenobiotics, which are clinically relevant in bacteria, fungi, and humans. Many fungal ABC transporters such as Pdr5 display an inherent asymmetry in their nucleotide-binding sites (NBS) unlike most of their human counterparts. This degeneracy of the NBSs is very intriguing and needs explanation in terms of structural and functional relevance. In this study, we mutated nonconsensus amino acid residues in the NBSs to its consensus counterpart and studied its effect on the function of the protein and effect on yeast cells. The completely “regenerated” Pdr5 protein was severely impaired in its function of ATP hydrolysis and of rhodamine 6G transport. Moreover, we observe alternative compensatory mechanisms to counteract drug toxicity in some of the mutants. In essence, we describe here the first attempts to restore complete symmetry in an asymmetric ABC transporter and to study its effects, which might be relevant to the entire class of asymmetric ABC transporters.  相似文献   

20.
The yeast Pdr5p transporter is a 160 kDa protein that effluxes a large variety of xenobiotic compounds. In this study, we characterize its ATPase activity and demonstrate that it has biochemical features reminiscent of those of other ATP-binding cassette multidrug transporters: a relatively high Km for ATP (1.9 mM), inhibition by orthovanadate, and the ability to specifically bind an azidoATP analogue at the nucleotide-binding domains. Pdr5p-specific ATPase activity shows complete, concentration-dependent inhibition by clotrimazole, which is also known to be a potent transport substrate. Our results indicate, however, that this inhibition is noncompetitive and caused by the interaction of clotrimazole with the transporter at a site that is distinct from the ATP-binding domains. Curiously, Pdr5p-mediated transport of clotrimazole continues at intracellular concentrations of substrate that should eliminate all ATPase activity. Significantly, however, we observed that the Pdr5p has GTPase and UTPase activities that are relatively resistant to clotrimazole. Furthermore, the Km(GTPase) roughly matches the intracellular concentrations of the nucleotide reported for yeast. Using purified plasma membrane vesicles, we demonstrate that Pdr5p can use GTP to fuel substrate transport. We propose that Pdr5p increases its multidrug transport substrate specificity by using more than one nucleotide as an energy source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号