首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim SR  Kim Y  Costa MA  An G 《Plant physiology》1992,98(4):1479-1483
Effect of salicylic acid (SA) on the expression of the potato proteinase inhibitor (PI) II promoter was studied with transgenic tobacco plants (Nicotiana tabacum) carrying a gene fusion between the PI-II promoter and the chloramphenicol acetyltransferase (cat) reporter. As previously observed, the PI-II promoter was inducible by wounding and the promoter activity was further enhanced by sucrose. Addition of SA did not influence the wound induction of the PI-II promoter but significantly inhibited the sucrose response. The 5′-deletion mutant −573 was unable to respond to wounding but did respond to sucrose and SA. The 3′-deletion analysis indicated the presence of a sucrose-responsive element between −574 and −520. A study of the insertion mutants revealed the function of another sucrose-responsive element between −522 and −500. Enhancer effects of these sucrose-responsive elements were inhibited by SA. These studies suggest that SA inhibits PI-II promoter activity by decreasing the sucrose response. Analysis of SA-related chemicals revealed that only acetyl-SA showed a similar inhibitory effect, and other hydroxybenzoic acids had little or no effect on the sucrose enhancer activity. Therefore, it seems that the interaction between SA and the receptor molecule is specific.  相似文献   

2.
The promoter region of the potato proteinase inhibitor II (PI-II) gene was studied to identifycis-acting regulatory sequences involved in sugar response using transgenic tobacco plants. The 5 control region covering an 892 nucleotide sequence upstream from the cap site and a 32 nucleotide untranslated region of the PI-II promoter was able to activate a reporter chloramphenicol acetyltransferase (cat) gene by wounding or by incubating in a sugar-free medium. This wound response was further enhanced by sugar. Hexoses, disaccharides, and some trisaccharides were strong inducers whereas pentoses, deoxy sugars, sugar acids, TCA cycle intermediates, amino acids, and other carbohydrates had little effect on the promoter activity. Deletion of the sequence between-892 and-573 abolished the wound response but not the sugar response. An additional 5 deletion to-453 removed the sugar inducibility. Locations of thecis-acting regulatory elements were further elucidated by 3 deletion analysis. Deletion of the downstream region from-520 did not affect the wound of sugar response of the promoter. However, 3 deletion mutant-574 was unable to respond to sugar but did respond weakly to wounding. Further deletion to-624 abolished both responses. Therefore, it can be concluded that a wound response element is located in between-624 and-574 and that the response is further enhanced by a sugar response element located in the sequence between-573 and-520.  相似文献   

3.
4.
5.
6.
7.
8.
The PR promoter of mycobacteriophage BPs directs early lytic gene expression and is under the control of the BPs repressor, gp33. Reporter gene fusions showed that PR has modest activity in an extrachromosomal context but has activity that is barely detectable in an integrated context, even in the absence of its repressor. Mutational dissection of PR showed that it uses a canonical −10 hexamer recognized by SigA, and mutants with mutations to the sequence 5′-TATAMT had the greatest activities. It does not contain a 5′-TGN-extended −10 sequence, although mutants with mutations creating an extended −10 sequence had substantially increased promoter activity. Mutations in the −35 hexamer also influenced promoter activity but were strongly context dependent, and similar substitutions in the −35 hexamer differentially affected promoter activity, depending on the −10 and extended −10 motifs. This warrants caution in the construction of synthetic promoters or the bioinformatic prediction of promoter activity. Combinations of mutations throughout PR generated a calibrated series of promoters for expression of stably integrated recombinant genes in both Mycobacterium smegmatis and M. tuberculosis, with maximal promoter activity being more than 2-fold that of the strong hsp60 promoter.  相似文献   

9.
The expression of At4g34880 gene encoding amidase in Arabidopsis was characterized in this study. A promoter region of 1.5 kb on the upstream of the start codon of the gene (referred as AmidP) was fused with uidA (GUS) reporter gene, and transformed into Arabidopsis plant for determining its spatial expression. The results indicated that AmidP drived GUS expression in vascular system, predominately in leaves. Truncation analysis of AmidP demonstrated that VASCULAR VEIN ELEMENT (VVE) motif with a region of 176 bp sequence (−1500 to −1324) was necessary and sufficient to direct the vascular vein specific GUS expression in the transgenic plant. Tandem copy of VVE increased vascular system expression, and 5′- and 3′- deletions of VVE motif in combination with a truncated −65 CaMV 35S minimal promoter showed that 11bp cis-acting element, naming DOF2 domain, played an essential role for the vascular vein specific expression. Meanwhile, it was also observed that the other cis-acting elements among the VVE region are also associated with specificity or strength of GUS activities in vascular system.  相似文献   

10.
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed at high levels in the hepatocyte, consistent with its role in promoting insulin clearance in liver. CEACAM1 also mediates a negative acute effect of insulin on fatty acid synthase activity. Western blot analysis reveals lower hepatic CEACAM1 expression during fasting. Treating of rat hepatoma FAO cells with Wy14,643, an agonist of peroxisome proliferator-activated receptor α (PPARα), rapidly reduces Ceacam1 mRNA and CEACAM1 protein levels within 1 and 2 h, respectively. Luciferase reporter assay shows a decrease in the promoter activity of both rat and mouse genes by Pparα activation, and 5′-deletion and block substitution analyses reveal that the Pparα response element between nucleotides −557 and −543 is required for regulation of the mouse promoter activity. Chromatin immunoprecipitation analysis demonstrates binding of liganded Pparα to Ceacam1 promoter in liver lysates of Pparα+/+, but not Pparα−/− mice fed a Wy14,643-supplemented chow diet. Consequently, Wy14,643 feeding reduces hepatic Ceacam1 mRNA and CEACAM1 protein levels, thus decreasing insulin clearance to compensate for compromised insulin secretion and maintain glucose homeostasis and insulin sensitivity in wild-type mice. Together, the data show that the low hepatic CEACAM1 expression at fasting is mediated by Pparα-dependent mechanisms. Changes in CEACAM1 expression contribute to the coordination of fatty acid oxidation and insulin action in the fasting-refeeding transition.  相似文献   

11.
12.
We characterize here the MJ1541 gene product from Methanocaldococcus jannaschii, an enzyme that was annotated as a 5′-methylthioadenosine/S-adenosylhomocysteine deaminase (EC 3.5.4.31/3.5.4.28). The MJ1541 gene product catalyzes the conversion of 5′-deoxyadenosine to 5′-deoxyinosine as its major product but will also deaminate 5′-methylthioadenosine, S-adenosylhomocysteine, and adenosine to a small extent. On the basis of these findings, we are naming this new enzyme 5′-deoxyadenosine deaminase (DadD). The Km for 5′-deoxyadenosine was found to be 14.0 ± 1.2 μM with a kcat/Km of 9.1 × 109 M−1 s−1. Radical S-adenosylmethionine (SAM) enzymes account for nearly 2% of the M. jannaschii genome, where the major SAM derived products is 5′-deoxyadenosine. Since 5′-dA has been demonstrated to be an inhibitor of radical SAM enzymes; a pathway for removing this product must be present. We propose here that DadD is involved in the recycling of 5′-deoxyadenosine, whereupon the 5′-deoxyribose moiety of 5′-deoxyinosine is further metabolized to deoxyhexoses used for the biosynthesis of aromatic amino acids in methanogens.  相似文献   

13.
14.
The mechanism of translational initiation differs between prokaryotes and eukaryotes. Prokaryotic mRNAs generally contain within their 5′-untranslated region (5′-UTR) a Shine-Dalgarno (SD) sequence that serves as a ribosome-binding site. Chloroplasts possess prokaryotic-like translation machinery, and many chloroplast mRNAs have an SD-like sequence, but its position is variable. Tobacco chloroplast atpB mRNAs contain no SD-like sequence and are U-rich in the 5′-UTR (−20 to −1 with respect to the start codon). In vitro translation assays with mutated mRNAs revealed that an unstructured sequence encompassing the start codon, the AUG codon and its context are required for translation. UV crosslinking experiments showed that a 50 kDa protein (p50) binds to the 5′-UTR. Insertion of an additional initiation region (SD-sequence and AUG) in the 5′-UTR, but not downstream, arrested translation from the authentic site; however, no inhibition was observed by inserting only an AUG triplet. We hypothesize for translational initiation of the atpB mRNA that the ribosome enters an upstream region, slides to the start codon and forms an initiation complex with p50 and other components.  相似文献   

15.
16.
The cis-requirements for the first editing site in the atp9 mRNA from pea mitochondria were investigated in an in vitro RNA editing system. Template RNAs deleted 5′ of −20 are edited correctly, but with decreased efficiency. Deletions between −20 and the edited nucleotide abolish editing activity. Substitution of the sequences 3′ of the editing site has little effect, which suggests that the major determinants reside upstream. Stepwise mutated RNA sequences were used as templates or competitors that divide the cis-elements into several distinct regions. In the template RNAs, mutation of the sequence between −40 and −35 reduces the editing activity, while the region from −15 to −5 is essential for the editing reaction. In competition experiments the upstream region can be titrated, while the essential sequence near the editing site is largely resistant to excess competitor. This observation suggests that either one trans-factor attaches to these separate cis-regions with different affinities or two distinct trans-factors bind to these sequences, and one of which is present in limited amounts, wheras the other one is more abundant in the lysate.  相似文献   

17.
The frequency distribution of mutation-induced aberrant 3′ splice sites (3′ss) in exons and introns is more complex than for 5′ splice sites, largely owing to sequence constraints upstream of intron/exon boundaries. As a result, prediction of their localization remains a challenging task. Here, nucleotide sequences of previously reported 218 aberrant 3′ss activated by disease-causing mutations in 131 human genes were compared with their authentic counterparts using currently available splice site prediction tools. Each tested algorithm distinguished authentic 3′ss from cryptic sites more effectively than from de novo sites. The best discrimination between aberrant and authentic 3′ss was achieved by the maximum entropy model. Almost one half of aberrant 3′ss was activated by AG-creating mutations and ~95% of the newly created AGs were selected in vivo. The overall nucleotide structure upstream of aberrant 3′ss was characterized by higher purine content than for authentic sites, particularly in position −3, that may be compensated by more stringent requirements for positive and negative nucleotide signatures centred around position −11. A newly developed online database of aberrant 3′ss will facilitate identification of splicing mutations in a gene or phenotype of interest and future optimization of splice site prediction tools.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号