首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol was developed for regeneration and Agrobacterium-mediated genetic transformation of Lesquerella fendleri. Calli were first induced from hypocotyls and cotyledons on MS plus 0.5 mg l−1 BA, 1 mg l−1 NAA and 1 mg l−1 2,4-D, then co-cultivated for 2–3 days in darkness on MS supplemented with 0.5 mg l−1 BA, 0.2 mg l−1 NAA and 100 μmol l−1As together with Agrobacterium tumefaciens strain EHA105/pCAMBIA1301 that harbored genes for uidA (GUS) and hygromycin resistance. Following co-cultivation, calli transfected by A. tumefaciens were transferred to MS with 0.5 mg l−1 BA, 0.2 mg l−1NAA, 500 mg l−1 Cef and 10 mg l−1 hygromycin and cultured for 10 days, then the hygromycin was increased to 20 mg l−1 on the same medium. After 4 weeks the resistant regenerants were transferred to MS with 0.5 mg l−1BA, 0.2 mg l−1 NAA, 500 mg l−1 Cef and 25 mg l−1 hygromycin for further selections. Transgenic plants were confirmed by polymerase chain reaction analysis, GUS histochemical assay and genomic Southern blot hybridization. With this approach, the average regeneration frequency from transfected calli was 22.70%, and the number of regenerated shoots per callus was 6–13. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for improvement of this Lesquerella species.  相似文献   

2.
Plantlets of the mulberry (Morus alba L. vars. Chinese White, and Kokuso-27) were produced from callus cultures. For callus induction, leaf, internodal segments, and petiole explants of Chinese White, Kokuso-27 and Ichinose varieties were grown on MS basal medium fortified with 2,4-D and 6-benzylaminopurine (BA). Callogenesis was dependent on the nature of explant used, the genotype and growth regulators supplemented in the medium. Leaves were the best explant type used for callus induction. Best callogenesis was obtained on MS medium containing a combination of 1 mg l−1 2,4-D and 0.5 mg l−1 BA (95-100%). Calluses formed shoots on MS medium supplemented with 1 mg l−1 BA. Supplementation with 0.1 mg l−1 2,3,5-triiodobenzoic acid (TIBA) in this medium enhanced shooting response. Presence of TIBA in the medium also improved the long-term organogenic potential of the callus. Regenerated shoots produced roots on Murashige & Skoog (MS) medium containing either 0.5 mg l−1 indole-3-butyric acid (IBA) or α-naphthaleneacetic acid (NAA). Seventy percent of the rooted plants were established in the field where they are performing well. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Summary An efficient procedure is outlined forin vitro regeneration of an epiphytic orchid,Cymbidium aloifolium (L.) Sw. using rhizomes developed from seeds. Murashige and Skoog's (1962) medium (MS) containing indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), or 1-naphthaleneacetic acid (NAA) stimulated growth and proliferation of rhizomes with NAA being most effective at 5.0 mg.l−1 (27.0 μM). Shoot bud differentiation was induced in the apical portions of the rhizomes on MS medium containing kinetin (Kn) or N6-benzyladenine (BA). The highest frequency of shoot regeneration (91.5%) and the maximum number of shoot buds formed (3.5 shoots/rhizome) were recorded with BA at 1.0 mg.l−1 (4.4 μM). NAA (0.1 mg.l−1, 0.54 μM), whenever added to the medium in conjunction with BA (1.0 mg.l−1, 4.4 μM), slightly enhanced the frequency of shoot bud regeneration (92.6%) and the number of shoot buds formed (5.2 shoots/rhizome). Moreover, an NAA-BA combination induced rooting in regenerated shoots thereby producing complete plantlets in one step. Shoots developed on cytokinin-supplemented medium were rooted on MS containing NAA at 1.0 mg.l−1 (5.4 μM). Regenerated plantlets were acclimated and eventually established in a garden.  相似文献   

4.
Malaxis acuminata is a terrestrial orchid that grows in shady areas of semi-evergreen to shrubby forests. It is highly valued for its medicinal properties as dried pseudo-bulbs are important ingredients of several Ayurvedic preparations. In this study, adventitious shoot buds were induced from internodal explants of M. acuminata grown on Murashige and Skoog (MS) medium supplemented with different concentrations of 6-benzyladenine (BA), kinetin (Kn), and thidiazuron (TDZ). Of the three cytokinins used, TDZ at 3 mg l−1 induced the highest frequency (82%) of organogenic explants. However, all responding explants produced only a single adventitious shoot irrespective of the type and concentration of the cytokinin. Adding 0.5 mg l−1 α naphthaleneacetic acid (NAA) to the medium enhanced adventitious shoot formation. In the presence of 3 mg l−1 TDZ and 0.5 mg l−1 NAA, frequency of organogenesis was 96% with a mean number of 6.1 shoots per explant. Prolonged culture or subculture on the same medium did not promote further shoot production. However, transfer of these cultures to MS medium supplemented with 3 mg l−1 TDZ and 0.5 mg l−1 NAA and various concentrations of different polyamines (PAs), including spermine, spermidine, and putrescine, significantly increased mean shoot number per explant. The highest frequency of shoot induction (100%) and mean shoot number per explant (14.6) was observed on MS medium with 3 mg l−1 TDZ, 0.5 mg l−1 NAA, and 0.4 mM spermidine. Regenerated shoots were excised and subcultured on an elongation medium consisting of MS medium with 3 mg l−1 BA. Moreover, the highest frequency of rooting (96%) and mean number of roots per shoot (3.3) was observed on MS medium with 4 mg l−1 indole-3-butyric acid (IBA) and 1.5 mg l−1 activated charcoal (AC). Almost 90% of rooted shoots were successfully acclimatized and established ex vitro.  相似文献   

5.
Micropropagated plants of two annual haloxerophytic Asiatic Salsola species (S. pestifer and S. lanata) were obtained from zygotic embryos cultured on Murashige and Skoog (MS) agar medium supplemented with 0.5 μM benzylamino-purine (BAP) and 0.3 μM indole-3-acetic acid (IAA) or with 0.5 μM 6 γ, γ-dimethylallylaminopurine and 0.3 μM IAA. The callus induction from shoot and leaf explants derived from plants propagated in vitro were obtained on MS agar medium with various concentration of auxins and cytokinins. The best medium for growth and proliferation of calluses of both studied species was MS medium containing 9.0 μM 2,4-dichlorophenoxyacetic acid. It was also determined that beginning of plant regeneration from callus of S. lanata was induced by 8.8 μM BAP. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
A broadly applicable direct shoot regeneration method from hypocotyls and stem explants has been developed for six cultivars of Antirrhinum majus L. In order to establish a stable and high frequency of shoot regeneration system, leaves, hypocotyls and stem explants of six cultivars were tested with 72 combinations of auxin (naphthaleneacetic acid (NAA) or 3-indoleacetic acid (IAA)) and cytokinin (6-benzylaminopurine (BA) or zeatin (Z)). A few adventitious shoots were directly regenerated from hypocotyl segments of cv. Orchid on MS medium with NAA + BA, IAA + BA, NAA + Z and IAA + Z. High frequency of direct shoot regeneration was obtained from hypocotyl segments on MS medium with 0.05, 0.1 or 0.25 mg l−1 NAA + 2 mg l−1 Z and 0.5 mg l−1 IAA + 2 mg l−1 Z. Finally, stable and high frequency (92–100%) of shoot regeneration with more than 10 adventitious shoots per explant was achieved from the hypocotyls and stem explants of all six cultivars on MS medium with 0.25 mg l−1 NAA + 2 mg l−1 Z. The shoots emerged directly from the hypocotyls and stem segments 4 weeks after culture initiation.  相似文献   

7.
The organogenic competence of leaf explants of eleven Carthamus species including C. tinctorius on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) + α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) + NAA was investigated. Highly prolific adventitious shoot regeneration was observed in C. tinctorius and C. arborescens on both growth regulator combinations and the shoot regeneration frequency was higher on medium supplemented with TDZ + NAA. Nodal culture of nine Carthamus species on media supplemented with BA and kinetin (KIN) individually revealed the superiority of media supplemented with BA over that of KIN in facilitating a higher shoot proliferation index. Proliferating shoots from axillary buds and leaf explants were transferred to medium supplemented with 1.0 mg dm−3 KIN or 0.5 mg dm−3 BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium supplemented with 1.0 mg dm−3 each of indole-butyric acid (IBA) and phloroglucinol. The plantlets thus obtained were hardened and transferred to soil.  相似文献   

8.
Broussonetia papyrifera is well-known for its bark fibers, which are used for making paper, cloth, rope etc. This is the first report of a successful genetic transformation protocol for B. papyrifera using Agrobacterium tumefaciens. Callus was initiated at a frequency of about 100% for both leaf and petiole explants. Shoots formed on these calli with a success rate of almost 100%, with 14.08 and 8.36 shoots regenerating from leave-derived and petiole-derived callus, respectively. For genetic transformation, leaf explants of B. papyrifera were incubated with A. tumefaciens strain LBA4404 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, leaf explants were cultured on Murashige and Skoog (Physiol Plant 15:473, 1962) (MS) medium supplemented with 1.5 mg l−1 benzyladenine (BA) and 0.05 mg l−1 indole-3-butyric acid (IBA) (CI medium) containing 5 mg l−1 hygromycin and 500 mg l−1 cefotaxime, in the dark. Hygromycin-resistant calli were induced from leaf explants 3 weeks thereafter. Regenerating shoots were obtained after transfer of the calli onto MS medium supplemented with 1.5 mg l−1 BA, 0.05 mg l−1 IBA, and 0.5 mg l−1 gibberellic acid (GA3) (SI medium), 5 mg l−1 hygromycin and 250 mg l−1 cefotaxime under fluorescent light. Finally, shoots were rooted on half strength MS medium (1/2 MS) supplemented with 10 mg l−1 hygromycin. Transgene incorporation and expression was confirmed by PCR, Southern hybridisation and histochemical GUS assay. Using this protocol, transgenic B. papyrifera plants containing desirable new genes can be obtained in approximately 3 months with a transformation frequency as high as 44%.  相似文献   

9.
Summary The bromeliad Tillandsia eizii is a stricking species with large, colorful, and persistent inflorescences that can reach 1 m in length. The value of this plant as an ornamental and its importance in cultural and religious activities has led to its overcollection in the wild. Clonal propagation via tissue culture may be a means to repopulate native stands while meeting the demands for this species as an ornamental and ceremonial plant. Adventitious bud proliferation was induced from axenically germinated scedling material. Parameters evaluated were the age of explant material at the time of transfer onto bud-induction medium, the concentration of plant growth regulators, and the period of exposure to induction medium. Light and seanning electron microscopy (SEM) established the origin and development of buds. Twelve-week-old seedling explants rapidly initiated adventitious buds after a 30-d induction period on shoot-initiation medium. Adventitious buds were induced in 40% of the explants placed on media with 2 mg l−1 6-benzylaminopurine (BA) (8.88 μM) plus 0.1 mg l−1 α-naphthaleneacetic acid (NAA) (0.54 μM) with some cultures becoming highly prolific after repeated subeulture. Shoots elongated in proliferating cultures, and plants were successfully acclimatized and planted into the greenhouse. The results indicate that tissue culture may be used as a means to propagate this epiphytic bromeliad species, which is being seriously affected by deforestation and habitat destruction. In addition, adventitious bud proliferation can provide a means to propagate superior genotypes.  相似文献   

10.
An in vitro protocol for efficient plant regeneration has been developed from mature embryo explants of highland barley (Hordeum vulgare L. var. nudum Hk. f.) under endosperm-supported culture. Embryos with (endosperm-supported culture, ES) or without endosperm (non-endosperm-supported culture, NES) were excised from mature seeds and cultured on MS medium supplemented with various concentrations of 2,4-D (1–5 mg l−1) for callus induction. The percentage of callus induction from ES explants was significantly (P < 0.05) lower than that from NES. The highest frequency (97.6%) of callus induction was obtained from NES explants on MS medium containing 3 mg l−1 2,4-D. When the primary calli were maintained at a reduced concentration of 2,4-D (0.5 mg l−1) for 3 weeks, embryogenic calli were formed. The embryogenic calli were then transferred to MS medium supplemented with different concentrations of BA (1–5 mg l−1) and 500 mg l−1 casein hydrolysate (CH) for shoot regeneration. However, the capacity of plant regeneration from ES explant-derived calli was significantly (P < 0.05) higher than that from NES. The best response (81.3%) was observed from ES explant-derived calli on MS medium containing 2 mg l−1 BA. Regenerated plantlets with well-developed root systems were transferred to pots where they grew well, attained maturity and produced fertile seeds. This method could be employed for genetic manipulation studies.  相似文献   

11.
Summary As a first step towards applying biotechnology to blue grama, Bouteloua gracilis (H. B. K.) Lag. ex Steud., we have developed a regenerable tissue culture system for this grass. Shoot apices were isolated from 3-d-old seedlings and cultured in 15 different growth regulator formulations combining 2,4-dichlorophenoxyacetic acid (2,4-D), Picloram (4-amino-3, 5,6-trichloropicolinic acid), N6-benzyladenine (BA) or adenine (6-aminopurine). The highest induction of organogenic callus was obtained with formulations containing 1 mg l−1 (4.52 μM) 2,4-D plus 0.5 mg l−1 (2.22 μM) BA. and 2 mg l−1 (8.88 μM) BA plus 1 mg l−1 (4.14 μM) Picloram with or without 40 mg l−1 (296.08 μM) adenine. Lower frequencies of induction were obtained for embryogenic as compared to organogenic callus. The most efficient treatments for induction of embryogenic callus contained 2 mg l−1 (9.05 μM) 2,4-D combined with 0.25 (1.11 μM) or 0.50 mg l−1 (2.22 μM) BA, or 1 mg l−1 (4.52 μM) 2,4-D with 0.50 mg l−1 (2.22 μM) BA. Regeneration was achieved in hormonefree Murashige anmd Skoog (MS) medium, half-strength MS medium or MS medium plus 1 mg l−1 (1.44 μM) gibberellic acid. The number of plantlets regenerated per 500 mg callus fresh weight on MS medium ranged from 9 for 2 mg l−1 (9.05 μM) 2,4-D to 62.2 for induction medium containing 2 mg l−1 (8,28 μM) Picloram, 1 mg l−1 (4.44 μM) BA and 40 mg l−1 (296.08 μM) adenine. Regnerated plants grown in soil under greenhouse conditions reached maturity and produced seeds.  相似文献   

12.
Strategies were developed for the successful isolation of large numbers of highly viable protoplasts from the leaves, stems and roots of axenic plants of the hybrid ornamental shrubWeigela ×florida cv Bristol Ruby. Protoplasts, of all sources, were cultured on different media, leading to the establishment of sustained divisions, and coupled with the production of multi-celled (>50 cells) colonies. However, those colonies derived from mesophyll protoplasts only were capable of a further proliferation to the callus stage. Upon transfer to a regeneration medium consisting of MS salts and organics plus a range of concentrations of NAA and BAP, such calli underwent caulogenesis, with optimum responses for a medium with 1.0 mg l−1 NAA and 1.0 mg l−1 BAP. The protoplast-derived shoots thus obtained were multiplied on MS medium with 0.1 mg l−1 IBA, 0.5 mg l−1 BAP and 0.1 mg l−1 GA3. Individual shoots were subsequently rooted on a half-strength MS medium plus 3.0 mg l−1 IBA, and complete protoplast-derived plants were finally transferred to the glasshouse for acclimatization.  相似文献   

13.
Summary An efficient protocol for plant regeneration from stem segments of Murraya koenigii was developed by culturing on Murashige and Skoog (MS) medium supplemented with 2.5 mg l−1 benzyladenine (BA), 25 mgl−1 adenine sulfate, 0.25 mgl−1 indole-3-acetic acid (IAA), and 3% sucrose. The frequency of shoot bud regeneration was higher on similar medium in subsequent subcultures. The regenerated shoots were rooted on half-strength basal MS medium supplemented with 0.25–0.5 mgl−1 IAA or 1-naphthaleneacetic acid (NAA) within 8–12 d of culture. The maximum percentage of rooting was obtained on MS medium supplemented with IAA and NAA, each at 0.25 mgl−1. During acclimatization, 95% of rooted plantlets survived were grown normally under greenhouse conditions.  相似文献   

14.
Summary Currently,Cereus peruvianus plants can be rapidly clonedin vitro via adventitious organogenesis using callus cultures; however, somaclonal variation is a problem. A method is described herein using lateral bud explants to produce multiple shoots for clonal propagation. Apical and lateral explants were cultured on MS (Murashige and Skoog, 1962) media with factorial combinations of the auxins indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), and cytokinins 6-ben-zyladenine (BA) and N-(2-furanyl-methyl)-1-purine-6 amine (kinetin) at the concentrations 0.0, 0.01, 0.1, 1.0 mg“l−1. Positive results were obtained from the lateral explants in all conditions tested, but apical explants did not respond toin vitro multiplication ofC. peruvianus cactus at all growth regulator combinations tested. Formation of axillary shoots inC. peruvianus seems most frequent in medium containing BA at 1.0 mg·l−1 (4.44 μM) and IAA or NAA at 1.0 mg·l−1 (5.71 μM or 5.37 μM respectively), but the frequency of shoot formation in the BA or kinetin and NAA or IAA combinations indicated that any of the combinations tested can be used for multiplication ofC. peruvianus plants regenerated from callus tissue culture. Root formation occurred in all (100%) of the cactus shoots after 9 wk in the same culture medium. All the cacti that developed at the different auxin and cytokin combinations continued growth after transfer to a potting mix of red earth (Paleudult) and ground river sand (1∶1).  相似文献   

15.
Summary Vegetatively propagated plantlets of six rose cultivars were induced to flower in vitro on media containing full-strength Murashige and Skoog (MS) inorganic salts, Gamborg's B5 organic elements with 400 mg l−1 myo-inositol, and different phytohormone combinations of 6-benzyladenine (BA) with α-naphthaleneacetic acid (NAA); thidiazuron (TDZ) with NAA; and zeatin (ZT) with NAA. The most efficient flower bud induction (49.1% and 44.1%) was obtained on media supplemented with 0.5 mg l−1 (2.27 μM) TDZ and 0.1 mg l−1 (0.54 μM) NAA or 0.5 mg l−1 (2.28 μM) ZT and 0.1 mg l−1 (0.54 μM) NAA for cultivar Orange Parade. Scanning electron microscopy (SEM) showed that in vitro flower bud induction occurred mostly between 15 and 30 d in induction medium through the normal flower development processes. With TDZ and ZT as the best choice for flower induction in all six cultivars tested, different rose cultivars varied in their responses to phytohormone treatments. Our study also revealed that the total time from original culture and subculture time before flower induction were two very important factors for in vitro flower induction. Plantlets 156–561 d from original culture and subcultured for 45 d were the best for flower induction. These authors contributed equally to this work.  相似文献   

16.
A tissue culture method is described for clonal multiplication of Leucaena leucocephala K67 using single lateral bud explants from 2–3 m tall greenhouse grown trees. N-6 benzyladenine (BA: 3.0 mg.1-1) and napthaleneacetic acid (NAA: 0.05 mg.1-1) in Murashige & Skoog's (MS) medium were found to be best suited for multiple shoot differentiation in 4–5 week old cultures. Analysis of variance of the main treatment effects of BA and NAA on shoot parameters showed that BA significantly (P=0.001) affected shoot development while NAA did not. A shoot multiplication rate of 22±3.63 shoots per bud explant was obtained in 150 days on 1/2 strength MS medium with 3.0 mg.1-1 BA and 0.05 mg.1-1 NAA. Shoots developed adventitious roots within 15 days in 1/2 strength MS medium containing indole-3-butyric acid (IBA: 3.0 mg.1-1) and Kinetin (0.05 mg.1-1). Eighty percent of the transplanted plantlets are being grown in greenhouse conditions.  相似文献   

17.
Summary An in vitro culture system was developed for Typhonium flagelliforme using buds from the rhizomes. The mineral salts of four media were tested. These were Murashige and Skoog (MS), Nitsch and Nitsch (NN), Gamborg B5 (GB5) and White (W) of which MS medium was found to be the best medium for in vitro culture of T. flagelliforme. The addition of as low as 0.1 mg l−1 (0.54 μM) α-naphthalene acetic acid (NAA) with the presence or absence of N6-benzyladenine (BA) in the MS medium caused abnormal shoot formation. The best medium for maximizing shoot number combined with normal complete plantlets from each bud was MS medium supplemented with 0.3 mg l−1 (1.33 μM) BA and 0.5 mg l−1 (2.46 μM) indole-3-butyric acid (IBA). The best acclimatization process was to transfer the normal plantlets, with all the leaves removed, into sand plus coconut husks substrate (1∶1) and placed in intermittent water mists house or shaded plant house with 50% light exclusion. Ninety two percent of the plantlets survived using this acclimatization method.  相似文献   

18.
In vitro studies were initiated with Withania somnifera (L.) Dun. for rapid micropropagation of selected chemotypes using nodes, internodes, hypocotyls and embryo explants. Direct regeneration of shoot buds was observed in MS basal medium supplemented with various concentrations of either benzyladenine (BA) or thidiazouron (TDZ) depending on the explant. Nodal explants formed multiple shoots both from pre-existing and de novo buds on Murashige and Skoog's medium (MS) containing 0.1–5.0 mg l−1 BA and a ring of de novo shoot buds on MS medium containing 0.2 and 0.3 mg l−1 TDZ. Internodal explants formed shoot buds on MS with 1.0 and 5.0 mg l−1 BA while the hypocotyl explants gave rise to multiple shoots only on MS with 0.5 mg l−1 BA. Isolated embryos gave rise to many shoot buds on MS with 0.2 and 0.3 mg l−1 TDZ. The shoot buds elongated and rooted either on MS medium with 0.01 mg l−1 BA or on half strength MS medium lacking growth regulators, which depended upon the growth regulator used in the shoot bud induction medium. Except for the embryo-derived plantlets, all other plantlets could be acclimatized with 100% success. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
In this paper we report the establishment of Acacia crassicarpa regeneration through organogenesis. We used phyllode (leaf) explants excised from 60-day-old in vitro seedlings for green compact nodule induction and, tested Murashige and Skoog (MS) media supplemented with various concentrations of 1-phenyl-3-(thiadiazol-5-yl) urea (thidiazuron) (TDZ) and α-naphthaleneacetic acid (NAA). Under the optimized condition, green compact nodules and adventitious shoots were induced in 10 and 40 days, respectively, on the medium containing a combination of 0.5 mg l−1 TDZ and 0.5 mg l−1 NAA. This medium also yielded the highest rate (56%) of adventitious shoots forming from the nodules. Efficient shoot elongation was achieved by transferring the clusters of adventitious shoots to medium containing 0.1 mg l−1 TDZ within 2 months. The elongated adventitious shoots were rooted at a rate of 96.5% on half-strength MS medium with 0.5 mg l−1 3-indolebutyric acid (IBA) in 1 month. Rooted plantlets were hardened and successfully established in soil with an 80% survival rate. To our knowledge, this is the first report describing a detailed protocol for regeneration through organogenesis using phyllodes as explants for A. crassicarpa.  相似文献   

20.
Lacking of an efficient regeneration protocol for the recalcitrant crop chickpea is a limiting factor for adapting genetic engineering approaches for its improvement. The present study describes a rapid and efficient method for multiple shoot regeneration for three Indian cultivars, B115, C235, ICCV89314, using single cotyledons with half embryos as explant. Modified MS medium with 1.5 mg l−1 6-benzyladenine (BA) and 0.04 mg l−1 α-naphthaleneacetic acid (NAA) induced a maximum of 26 shoots from a single explant after 20 days of culture. When cultured in modified MS medium containing 0.2 mg l−1 indole-3-acetic acid (IAA), 80% of the shoots from each regenerating explant elongated in another 20–25 days. Following a root-grafting protocol, 90–95% of the elongated shoots survived in soil which subsequently produced seeds. The regeneration process from explant preparation to complete plants took 55–60 days. The presently optimized rapid regeneration method holds promise for facilitating the deployment of agronomically important components through genetic transformation for betterment of this important food crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号