首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study has used methoxyacetic acid (MAA)-induced depletion of specific germ cell types in the rat and in situ hybridization with nonradioactive riboprobes to determine the stages of the spermatogenic cycle at which there is expression of the mRNA for the basic chromosomal protein transition protein 2 (TP2). On Northern blots, an abundant mRNA was detectable in samples from control adult rats, but the amount of message was markedly reduced when RNA was extracted from the testes of rats treated 14 and 21 days previously with methoxyacetic acid. These testes were depleted specifically of step 7-12 spermatids, suggesting that these cells contain TP2 mRNA. When tissue sections were subjected to in situ hybridization, the TP2 mRNA was localized at the cellular and subcellular levels. Messenger RNA for TP2 was first detectable in spermatids at step 7. In these spermatids, at high magnification, in addition to some positive reaction in the cytoplasm, intense staining was located to a perinuclear structure consistent with localization of mRNA within the chromatoid body. The amount of TP2 mRNA in the cytoplasm increased as remodelling of the early spermatid nucleus progressed and was highest in step 10 and 11 spermatids at stages X and XI. Thereafter, the mRNA decreased until it was undetectable in step 14 spermatids at stage XIV. The localization of TP2 mRNA to the chromatoid body of step 7 spermatids would be consistent with this organelle being a storage site for long-lived mRNAs utilized later in spermiogenesis.  相似文献   

2.
3.
Immunocytochemical localization and in situ hybridization techniques were used to investigate the presence of spermatid nuclear transition protein 1 (TP1) and its mRNA during the various stages of spermatogenesis in the rat. A specific antiserum to TP1 was raised in a rabbit and used to show that TP1 is immunologically crossreactive among many mammals including humans. During spermatogenesis the protein appears in spermatids as they progress from step 12 to step 13, a period in which nuclear condensation is underway. The protein is lost during step 15. An asymmetric RNA probe generated from a TP1 cDNA clone identified TP1 mRNA in late round spermatids beginning in step 7. The message could no longer be detected in spermatids of step 15 or beyond. Thus, TP1 mRNA first appears well after meiosis in haploid cells but is not translated effectively for the several days required for these cells to progress to the stage of chromatin condensation. Message and then protein disappear as the spermatids enter step 15. In agreement with a companion biochemical study (Heidaran, M.A., and W.S. Kistler. J. Biol. Chem. 1987. 262:13309-13315), these results establish that translational control is involved in synthesis of this major spermatid nuclear protein. In addition, they suggest that TP1 plays a role in the completion but not the initiation of chromatin condensation in elongated spermatids.  相似文献   

4.
5.
Transition protein 2 is a basic chromosomal protein which functions as an intermediate in the replacement of histones by protamines, and the mitochondrial capsule seleno-protein is a constituent of the outer membrane of mitochondria which functions in constructing the mitochondrial sheath surrounding the flagellum. To determine precisely the stages in spermatogenesis when these mRNAs are present, paraffin sections of sexually mature testes were hybridized to 35S- and 3H-labeled antisense RNAs and exposed to autoradiographic emulsion. The cell types hybridizing to probes in situ were determined by staining with hematoxylin and periodic acid Schiff. The in situ hybridizations reveal that the transition protein 2 mRNA is first detectable in step 7 round spermatids, persists at high levels through step 13, and is degraded before step 14. By contrast, the mitochondrial capsule seleno-protein mRNA is first detected in step 3 round spermatids and persists at high levels until step 16, the end of spermiogenesis. The mitochondrial capsule seleno-protein mRNA appears to be expressed only in haploid cells since low levels could not be detected in Northern blots of RNA from pachytene primary spermatocytes from 18 day prepubertal mice. These results demonstrate that the transition protein 2 and mitochondrial capsule seleno-protein mRNAs are transcribed and degraded at different times during the haploid phase of spermatogenesis.  相似文献   

6.
7.
Expression of mRNAs in the rat testis encoding cyclic AMP (cAMP)-dependent protein kinases (PKAs) was studied. A microdissection method was used to isolate 10 pools of seminiferous tubules representing various stages of the cycle of the seminiferous epithelium in combination with Northern blots and in situ hybridization. The results showed a differential expression of the four isoforms of the regulatory subunits (PKA-R) at various stages of the cycle. RI alpha mRNA was detected at approximately the same levels at all stages while expression of RI beta mRNA was low at stages XIII-III, started to increase at stages IV-V, and reached a maximum at stages VIII-XI. The level of RII alpha mRNA was low at stages II-VI, increased markedly at stage VIIa,b, and reached maximal levels at stages VIIc,d and VIII, followed by a reduced expression at later stages, RII beta mRNA levels increased significantly at stage VI with maximal levels at stages VII and VIII. In situ hybridization of sections from the adult rat testis revealed RI alpha mRNA in the layers of pachytene spermatocytes and round spermatids of all stages. RI beta mRNA was detected over late pachytene spermatocytes and round spermatids of stages VII-XIII. RII alpha mRNA was seen in the layers of round spermatids of stages VII-VIII and elongating spermatids of later stages while RII beta mRNA was detected only in the round spermatid region of stages VII-VIII and in some tubules of stages I-VI. These data show that mRNAs encoding PKA-R are expressed in a stage-specific manner in differentiating male germ cells with different patterns of expression for each subunit; this suggests specific roles for these protein kinases at different times of spermatogenesis.  相似文献   

8.
 The testicular H1 histone variant, H1t, is synthesized during spermatogenesis in mammalian male germ cells. In situ hybridization and immunohistochemical techniques were used to assign the expression of either the H1t mRNA or the H1t protein to specific cell stages of spermatogenesis. Our results show the presence of the H1t mRNA only in the late and mid-pachytene stages, whereas the protein occurs first in pachytene spermatocytes, and persists until later stages from round up to elongated spermatids. Accepted: 1 March 1996  相似文献   

9.
We have previously developed a method to purify recombinant proteins, termed inverse transition cycling (ITC) that eliminates the need for column chromatography. ITC exploits the inverse solubility phase transition of an elastin‐like polypeptide (ELP) that is fused to a protein of interest. In ITC, a recombinant ELP fusion protein is cycled through its phase transition, resulting in separation of the ELP fusion protein from other Escherichia coli contaminants. Herein, we examine the role of the position of the ELP in the fusion protein on the expression levels and yields of purified protein for four recombinant ELP fusion proteins. Placing the ELP at the C‐terminus of the target protein (protein‐ELP) results in a higher expression level for the four ELP fusion proteins, which also translates to a greater yield of purified protein. The position of the fusion protein also has a significant impact on its specific activity, as ELP‐protein constructs have a lower specific activity than protein‐ELP constructs for three out of the four proteins. Our results show no difference in mRNA levels between protein‐ELP and ELP‐protein fusion constructs. Instead, we suggest two possible explanations for these results: first, the translational efficiency of mRNA may differ between the fusion protein in the two orientations and second, the lower level of protein expression and lower specific activity is consistent with a scenario that placement of the ELP at the N‐terminus of the fusion protein increases the fraction of misfolded, and less active conformers, which are also preferentially degraded compared to fusion proteins in which the ELP is present at the C‐terminal end of the protein.  相似文献   

10.
A tetraspanin family protein, CD9, has not previously been identified in sperm cells. Here, we characterize sperm CD9 in the mouse, including its unique localization in sperm, appearance during spermatogenesis, and behavior and fate during mouse fertilization. In sperm, CD9 is an inner acrosomal membrane-associated protein, not a plasma membrane-associated protein. Its molecular weight is approximately 24 kDa throughout its processing, from testicular germ cells to acrosome-reacted sperm. A temporal difference was found between mRNA and protein expression; CD9 mRNA was detected in the stages from spermatogonia through round spermatids showing the strongest levels in midpachytene spermatocytes. CD9 protein was detected in the cytoplasm throughout the stages from spermatogonia to spermatocytes. While CD9 was weakly expressed in the spermatids from step 1 through step 14, the signals became clearly positive at the marginal region of the anterior acrosome in elongated spermatids. After the acrosome reaction, the majority of sperm CD9 was retained in the inner acrosomal membrane, but some quantity of CD9 was found on the plasma membrane covering the equatorial segment as detected by immunogold electron microscopy using anti-CD9 antibody. CD9 was maintained on the sperm head after reaching the perivitelline space of CD9-deficient eggs that were recovered after natural mating with wild males. Thus, this study characterizes CD9 in sperm development and fertilization.  相似文献   

11.
We used differential display in combination with complementary DNA (cDNA) cloning approach to isolate a novel rat gene designated as spetex-1, which had an open reading frame of 1,668-length nucleotides encoding a protein of 556 amino acids. Spetex-1 mRNA was highly expressed in testis, and weekly expressed in lung, intestine, and spleen. Spetex-1 expression in the rat testes was detected first at 3 weeks in postnatal development and continued to be detected up to adulthood. A search in the databases showed that the amino acid sequence of spetex-1 was 82% identical to that of its mouse homologue found in the databases. Both rat spetex-1 and the mouse homologue contained Ser-X (X = His, Arg, or Asn) repeats in the middle portion of the proteins. In situ hybridization revealed that spetex-1 mRNA was expressed in haploid spermatids of step 7-18 within the seminiferous epithelium. Immunohistochemical analysis with confocal laser-scanning microscopy demonstrated that spetex-1 protein was not expressed in spermatogonia, spermatocytes, and round spermatids in adult rat testis, but was specifically detected in the residual cytoplasm of elongate spermatids of step 15-18 as well as in residual bodies engulfed by Sertoli cells. We interpreted these data as a potential role of spetex-1 in spermatogenesis, especially in cell differentiation from late elongate spermatids to mature spermatozoa.  相似文献   

12.
13.
Proteins immunologically related to intermediate filaments have been identified in the sperm fibrous sheath but remain uncharacterized. We isolated and characterized a novel intermediate filament-related protein (FS39) localized to the fibrous sheath of the sperm tail. We used Northern blot analysis to establish that FS39 is transcribed predominantly in the testis of mice >18-20 days old. At this age, spermatogenesis has proceeded to the development of the first round haploid spermatids. In situ hybridization revealed that FS39 mRNA is first detectable in late step 3 spermatids, is at its highest level during steps 9 and 10, and diminishes in steps 13 and 14. Western blot analysis identified a single protein of 39 kDa in mouse and rat testis and epididymis, suggesting the protein is conserved in rodents. Indirect immunofluorescence localized FS39 to the fibrous sheath of the sperm tail, and in testis sections expression was detected from step 13 and step 14 spermatids onward, indicating FS39 is under translational control. Southern blot analysis showed FS39 to be a single copy gene, and hybridization to human genomic DNA suggested that a human equivalent gene is present. These results demonstrate that FS39 is transcribed in testis tissue during the haploid phase of spermatogenesis, is present in mature sperm, and codes for a novel 39-kDa intermediate filament-related protein of the fibrous sheath.  相似文献   

14.
15.
Differential display in combination with a cDNA cloning approach were used to isolate a novel gene, spergen-2, which has an open reading frame of 1500 nucleotides and encodes a protein of 500 amino acids that contains ankyrin repeat motifs and a putative nuclear localization signal. Expression of spergen-2 is developmentally upregulated in testis. In situ hybridization revealed that spergen-2 mRNA is expressed in spermatocytes and round spermatids (steps 1-6). Immunohistochemical analysis with confocal laser-scanning microscopy demonstrated that spergen-2 protein is predominantly expressed in nuclei of late spermatocytes (stages IX-XIV) and spermatids (steps 1-11), indicating the restricted expression of spergen-2 during spermatogenesis. In nucleoplasm of spermatogenic cell nuclei, spergen-2 tends to localize in the interchromosome space with relatively low DNA density. These findings indicate a potential role of spergen-2 in spermatogenesis, especially in cell differentiation from late pachytene spermatocytes to spermatids or in early spermatid differentiation.  相似文献   

16.
Parvalbumin, a Ca2+-binding protein, was isolated from rat testis. This is the first demonstration of the protein in endocrine glands. By using a rat parvalbumin cDNA probe, parvalbumin mRNA was demonstrated in the testis, indicating that the protein is synthesized in this tissue and that testis parvalbumin is a product of the same gene as the one encoding for muscle parvalbumin. Parvalbumin was localized by immunohistochemical methods in the Leydig cells and in the acrosome region of maturing spermatids (stages 1-15). The expression of parvalbumin during testis development was followed. High parvalbumin protein and mRNA levels were found at stages of highest Leydig cell activity, i.e. at late fetal stages until birth and again around postnatal day 50. This suggests that parvalbumin may be involved in the production of testosterone in Leydig cells, a process which is highly dependent on calcium.  相似文献   

17.
Expression of the testis-specific histone TH2B, the phosphoprotein p19, and the transition proteins TP1 and TP2, was localized in the rat testis and quantified, using in situ hybridization of their mRNAs with radiolabeled probes and image analysis. In a first study, expression was assessed during testicular development between day 2 and day 65 postpartum. TH2B mRNAs appeared first in preleptotene spermatocytes (PL) on day 12 and in pachytene spermatocytes (PS) on day 18; p19 mRNAs were present in PS from day 18 onward, and TP1 and TP2 mRNAs were detected in round spermatids (RS) from day 32 onward. In the second trial, the expression of these four genes was studied throughout the cycle of spermatogenic epithelium in mature animals. TH2B mRNAs were localized in B spermatogonia at stage V, and in PL at stages VII and VIII but no longer in leptotene and zygotene spermatocytes. Thereafter, TH2B mRNAs were observed in PS from stages III–IV to XIII. The steady-state mRNA level per cell was high in PS with a maximum at stages IX–X. p19 mRNAs were present in PS from stages III–IV onward and in RS up to stages 1–2 of spermiogenesis. The maximum mRNA level per cell was observed in PS between stages VII and XIII. The presence of TP1 mRNAs was restricted to spermatids from steps 6 to 15–16 of spermiogenesis while TP2 mRNAs were detected in spermatids only between step 7 and step 13. The highest steady-state amounts of mRNAs were observed between step 7 and step 14 for TP1 and between step 10 and step 12 for TP2. Mol. Reprod. Dev. 51:22–35, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The response of Drosophila melanogaster male germ cells to the induction of mutation by ethyl methanesulfonate (EMS) and diethyl sulfate (DES) and the influence of pre-treatments with butylated hydroxytoluene (BHT) were studied. Careful sampling of cell stages revealed that fully mature motile sperm were less sensitive to the induction of sex-linked recessive lethals by EMS than late spermatids, and that the remaining cell stages presented a fairly homogeneous response to the mutagen. The frequency of lethals induced by DES could be grouped into two plateaus: the first one, with a higher mutation rate, comprised motile and immotile sperm and late spermatids, the second one, medium and early spermatids. No sparing action of BHT was detected in any of the developing germ cells treated with EMS or DES, whereas an increase in sex-linked recessive lethal frequency was observed in some experiments in early spermatids. The enhancement of damage is attributed to impairment of repair achieved through the ability of BHT to modify enzymic activity.  相似文献   

19.
Spermiogenesis, occurring in the male testis, is a complicated and highly-ordered developmental process resulting in the production of fertile mature sperm. In Gekko japonicus, this process occurs in 7 steps during which the spermatids undergo dramatic changes in the cytoskeleton and nucleus. Here, we cloned and sequenced the cDNA of the mammalian KIFC1 homologue in the testis of G. japonicus. The 2 344 bp full-length cDNA sequence contained a 191 bp 5'-untranslated region, a 134 bp 3'-untranslated region and a 2 019 bp open reading frame encoding a protein of 672 amino acids. Tissue expression analysis revealed the highest expression of kifc1 mRNA was in the testis. Fluorescence in situ hybridization revealed that the kifc1 mRNA signal was hardly detected in step 1 spermatids but became concentrated at the acrosome of step 2 spermatids and abundant in the nucleus of step 5 spermatids where the nucleus then undergoes dramatic elongation and compression. The kifc1 mRNA signal then gradually disappears in mature sperm. This expression of KIFC1 at specific stages of spermiogenesis in G. japonicus implies its important role in the major cytological transformations such as acrosome biogenesis and nucleus morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号