首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

2.
The membrane-bound flavoprotein NADPH:cytochrome P-450 (cytochrome c) reductase, that functions in electron transfer to cytochrome P-450 mono-oxygenases, was purified from a cell suspension culture of the higher plant Catheranthus roseus . Anti-serum raised against the purified protein was found to inhibit NADPH:cytochrome c reductase activity as well as the activities of the cytochrome P-450 enzymes geraniol 10-hydroxylase and trans -cinnamate 4-hydroxylase, which are involved in alkaloid biosynthesis and phenylpropanoid biosynthesis, respectively. Immunoscreening of a C. roseus cDNA expression library resulted in the isolation of a partial NADPH: cytochrome P-450 reductase cDNA clone, which was identified on the basis of sequence homology with NADPH:cytochrome P-450 reductases from yeast and animal species. The identity of the cDNA was confirmed by expression in Escherichia coli as a functional protein capable of NADPH-dependent reduction of cytochrome c and neotetrazolium, two in vitro substrates for the reductase. The N-terminal sequence of the reductase, which was not present in the cDNA clone, was determined from a genomic NADPH: cytochrome P-450 reductase clone. It was demonstrated that the reductase probably is encoded by a single copy gene. A sequence comparison of this plant NADPH:cytochrome P-450 reductase with the corresponding enzymes from yeast and animal species showed that functional domains involved in binding of the cofactors FMN, FAD and NADPH are highly conserved between all kingdoms. In C. roseus cell cultures a rapid increase of the reductase steady state mRNA level was observed after the addition of fungal elicitor preparations that are known to induce cytochrome P-450-dependent biosynthetic pathways.  相似文献   

3.
NADPH-cytochrome c reductase was purified to electrophoretic homogeneity from detergent solubilized sheep lung microsomes. The specific activity of the purified enzyme ranged from 56 to 67 mumol cytochrome c reduced/min/mg protein and the yield was 48-52% of the initial activity in lung microsomes. The reductase had Mr of 78,000 and contained 1 mol each of FAD and FMN. Km values obtained in 0.3 M phosphate buffer, pH 7.8 at 37 degrees C for NADPH and cytochrome c were 11.1 +/- 0.70 microM and 20.0 +/- 2.15 microM. Lung reductase was inhibited by its substrate, cytochrome c when its concentration was above 160 microM. The lung reductase exhibited a ping-pong type kinetic mechanism for NADPH mediated cytochrome c reduction. Purified lung reductase was biocatalytically active in supporting benzo(a)pyrene hydroxylation reaction when coupled with lung cytochrome P-450 and lipid.  相似文献   

4.
NADPH-cytochrome P-450 (cytochrome c) reductase (EC 1.6.2.4) was solubilized by detergent from microsomal fraction of wounded Jerusalem-artichoke (Helianthus tuberosus L.) tubers and purified to electrophoretic homogeneity. The purification was achieved by two anion-exchange columns and by affinity chromatography on 2',5'-bisphosphoadenosine-Sepharose 4B. An Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. The purified enzyme exhibited typical flavoprotein redox spectra and contained equimolar quantities of FAD and FMN. The purified enzyme followed Michaelis-Menten kinetics with Km values of 20 microM for NADPH and 6.3 microM for cytochrome c. In contrast, with NADH as substrate this enzyme exhibited biphasic kinetics with Km values ranging from 46 microM to 54 mM. Substrate saturation curves as a function of NADPH at fixed concentration of cytochrome c are compatible with a sequential type of substrate-addition mechanism. The enzyme was able to reconstitute cinnamate 4-hydroxylase activity when associated with partially purified tuber cytochrome P-450 and dilauroyl phosphatidylcholine in the presence of NADPH. Rabbit antibodies directed against plant NADPH-cytochrome c reductase affected only weakly NADH-sustained reduction of cytochrome c, but inhibited strongly NADPH-cytochrome c reductase and NADPH- or NADH-dependent cinnamate hydroxylase activities from Jerusalem-artichoke microsomal fraction.  相似文献   

5.
Cytochrome P-450 reductase and cytochrome P-450 fractions have been separated and partially purified from colonic mucosal microsomes of rat pretreated with phenobarbital or beta-naphthoflavone. Colonic cytochrome P-450 reductase has a molecular weight of 76,000. The Km values of colonic cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, ferricyanide, and dichlorophenolindophenol and the electron donor NADPH are 6, 50, 11 and 11 microM, respectively. Immunochemical techniques identified the presence of beta-naphthoflavone Forms 1, 4 and 5 after beta-naphthoflavone treatment but beta-naphthoflavone Forms 1 and 4 and phenobarbital Form 1 after phenobarbital treatment.  相似文献   

6.
The reduction of highly purified cytochrome P-450 from rabbit liver microsomes under anaerobic conditions requires 2 electrons per molecule. Similar results were obtained with dithionite, NADPH in the presence of NADPH-cytochrome P-450 reductase, or a photochemical system as the electron donor, with CO or other ligands, with substrate or phosphatidylcholine present, after denaturation to form cytochrome P-420, or with cytochrome P-450 partially purified from rat or mouse liver microsomes. The reduced cytochrome P-450 donates 2 electrons to dichlorophenolindophenol or to cytochrome c. Reoxidation of reduced cytochrome P-450 by molecular oxygen restores a state where 2 electrons from dithionite are required for re-reduction. Although these unexpected findings indicate the presence of an electron acceptor in addition to the heme iron atom, significant amounts of non-heme iron, other metals or cofactors, or disulfide bonds were not found, and free radicals were not detected by electron paramagnetic resonance spectrometry. Resolution of the cytochrome with acetone and acid yielded the apoenzyme, which did not accept electrons, and ferriprotoporphyrin IX, which accepted a single electron. A reconstituted hemoprotein preparation with the spectral characteristics of cytochrome P-420 accepted as much as 0.7 extra electron equivalent per heme. The midpoint oxidation-reduction potential of purified cytochrome P-450 from rabbit liver microsomes at pH 7.0 is -330 mv, and with CO present this value is changed to about -150 mv. The oxidation-reduction potential is unaffected by the presence of phosphatidylcholine or benzphetamine, a typical substrate. Laurate, aminopyrine, and benzphetamine undergo hydroxylation in the presence of chemically reduced cytochrome P-450 and molecular oxygen. Neither NADPH nor the reductase is required for substrate hydroxylation under these conditions.  相似文献   

7.
Ecdysone 20-monooxygenase, an enzyme which converts ecdysone to ecdysterone (the major moulting hormone of insects) has been characterized in cell-free preparations of tissues from African migratory locust. The product of the reaction has been identified as ecdysterone on the basis of several microchemical derivatization and chromatographic methods. Ecdysone 20-monooxygenase activity is located primarily in the microsomal fraction which also carries NADPH cytochrome c reductase and cytochrome P-450, as shown by sucrose density gradient centrifugation. Optimal conditions for the ecdysone 20-monooxygenase assay have been determined. The enzyme has a Km for ecdysone of 2.7 x 10(-7) M and is competitvely inhibited by ecdysterone (Ki = 7.5 x 10(-7) M). Ecdysone 20-monooxygenase is a typical cytochrome P-450 linked monooxygenase: the reaction requires O2 and is inhibited by CO, an effect partially reversed by white light. The enzyme is effectively inhibited by several specific monooxygenase inhibitors and by sulfhydryl reagents, but not by cyanide ions. Ecdysone elicits a type I difference spectrum when added to oxidized microsomes. NADPH acts as preferential electron donor. The transfer of reducing equivalents proceeds through NADPH cytochrome c (P-450) reductase: ecdysone 20-monooxygenase is inhibited by cytochrome c. Both NADPH cytochrome c reductase and ecdysone 20-monooxygenase are inhibited by NADP+ and show a similar Km for NADPH. The Malpighian tubules have the highest specific activity of ecdysone 20-monooxygenase, while fat body contain most of the cytochrome P-450 and NADPH cytochrome c reductase.  相似文献   

8.
1. Reductase was purified to electrophoretic homogeneity from sheep liver and lung microsomes. The specific activity of both enzymes ranged from 55 to 66 mumol cytochrome c reduced/min/mg protein. 2. Liver and lung reductases appeared to have similar kinetic and spectral properties. Km (NADPH) and Km (cytochrome c) values were calculated to be 14.3 +/- 1.23 microM and 22.2 +/- 2.78 microM for liver and 11.1 +/- 0.70 microM and 20.0 +/- 2.15 microM for lung reductase, respectively. Kinetic studies showed that cytochrome c can bind the oxidized form of the enzyme as well as its reduced form and both reductases operated through a ping-pong type mechanism. 3. These reductases cannot be distinguished on the basis of monomer molecular weights (Mr 78,000) except that the liver reductase was found to be more susceptible to proteolytic attack. 4. Both reductases supported aniline 4-hydroxylation and ethylmorphine N-demethylation reactions to the same extent in the reconstituted systems. However, sheep lung reductase appeared only 36.5 and 14.8% as effective in catalyzing benzo[a]pyrene reaction as an equivalent amount of reductase from liver in the presence of liver cytochrome P-450 and 3MC-treated rat liver cytochrome P-448, respectively.  相似文献   

9.
A flavoprotein catalyzing the reduction of cytochrome c by NADPH was solubilized and purified from microsomes of yeast grown anaerobically. The cytochrome c reductase had an apparent molecular weight of 70,000 daltons and contained one mole each of FAD and FMN per mole of enzyme. The reductase could reduce some redox dyes as well as cytochrome c, but could not catalyze the reduction of cytochrome b5. The reductase preparation also catalyzed the oxidation of NADPH with molecular oxygen in the presence of a catalytic amount of 2-methyl-1,4-naphthoquinone (menadione). The Michaelis constants of the reductase for NADPH and cytochrome c were determined to be 32.4 and 3.4 micron M, respectively, and the optimal pH for cytochrome c reduction was 7.8 to 8.0. It was concluded that yeast NADPH-cytochrome c reductase is in many respects similar to the liver microsomal reductase which acts as an NADPH-cytochrome P-450 reductase [EC 1.6.2.4].  相似文献   

10.
Purified hepatic NADPH-cytochrome P-450 reductase, which was reconstituted with dilauroylphosphatidylcholine, catalyzed a one-electron reductive denitrosation of 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)-1-nitrosourea ([14C]CCNU) to give 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)urea at the expense of NADPH. Ambient oxygen or anoxic conditions did not alter the rates of [14C]CCNU denitrosation catalyzed by NADPH-cytochrome P-450 reductase with NADPH. Electron equivalents for reduction could be supplied by NADPH or sodium dithionite. However, the turnover number with NADPH was slightly greater than with sodium dithionite. Enzymatic denitrosation with sodium dithionite or NADPH was observed in anaerobic incubation mixtures which contained NADPH-cytochrome P-450 reductase with or without cytochrome P-450 purified from livers of phenobarbital (PB)-treated rats; PB cytochrome P-450 alone did not support catalysis. PB cytochrome P-450 stimulated reductase activity at molar concentrations approximately equal to or less than NADPH-cytochrome P-450 reductase concentration, but PB cytochrome P-450 concentrations greater than NADPH-cytochrome P-450 reductase inhibited catalytic denitrosation. Cytochrome c, FMN, and riboflavin demonstrated different degrees of stimulation of NADPH-cytochrome P-450 reductase-dependent denitrosation. Of the flavins tested, FMN demonstrated greater stimulation than riboflavin and FAD had no observable effect. A 3-fold stimulation by FMN was not observed in the absence of NADPH-cytochrome P-450 reductase. These studies provided evidence which establish NADPH-cytochrome P-450 reductase rather than PB cytochrome P-450 as the enzyme in the hepatic endoplasmic reticulum responsible for CCNU reductive metabolism.  相似文献   

11.
Cytochrome P-450-dependent digitoxin 12 beta-hydroxylase from cell cultures of foxglove (Digitalis lanata) was solubilized from microsomal membranes with CHAPS (3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulphonic acid). Cytochrome P-450 was separated from NADPH: cytochrome c (P-450) reductase by ion-exchange chromatography on DEAE-Sephacel. NADPH:cytochrome c (P-450) reductase was further purified by affinity chromatography on 2',5'-ADP-Sepharose 4B. This procedure resulted in a 248-fold purification of the enzyme; on SDS/polyacrylamide-gel electrophoresis after silver staining, only one band, corresponding to a molecular mass of 80 kDa, was present. The digitoxin 12 beta-hydroxylase activity could be reconstituted by incubating partially purified cytochrome P-450 and NADPH:cytochrome c (P-450) reductase together with naturally occurring microsomal lipids and flavin nucleotides. This procedure yielded about 10% of the original amount of digitoxin 12 beta-hydroxylase.  相似文献   

12.
We have studied the role of NADPH cytochrome P-450 reductase in the metabolism of arachidonic acid and in two other monooxygenase systems: aryl hydrocarbon hydroxylase and 7-ethoxyresorufin-o-deethylase. Human liver NADPH cytochrome P-450 reductase was purified to homogeneity as evidenced by its migration as a single band on SDS gel electrophoresis, having a molecular weight of 71,000 Da. Rabbits were immunized with the purified enzyme and the resulting antibodies were used to evaluate the involvement of the reductase in cytochrome P-450-dependent arachidonic acid metabolism by bovine corneal epithelial and rabbit renal cortical microsomes. A highly sensitive immunoblotting method was used to identify the presence of NADPH cytochrome P-450 reductase in both tissues. We used these antibodies to demonstrate for the first time the presence of cytochrome c reductase in the cornea. Anti-NADPH cytochrome P-450 reductase IgG, but not anti-heme oxygenase IgG, inhibited the NADPH-dependent arachidonic acid metabolism in both renal and corneal microsomes. The inhibition was dependent on the ratio of IgG to microsomal protein where 50% inhibition of arachidonic acid conversion by cortical microsomes was achieved with a ratio of 1:1. A higher concentration of IgG was needed to achieve the same degree of inhibition in the corneal microsomes. The antibody also inhibited rabbit renal cortical 7-ethoxyresorufin-o-deethylase activity, a cytochrome P-450-dependent enzyme. However, the anti-NADPH cytochrome P-450 reductase IgG was much less effective in inhibiting rabbit cortical aryl hydrocarbon hydroxylase. Thus, the degree of inhibition of monooxygenases by anti-NADPH cytochrome P-450 reductase IgG is variable. However, with respect to arachidonic acid, NADPH cytochrome P-450 reductase appears to be an integral component for the electron transfer to cytochrome P-450 in the oxidation of arachidonic acid.  相似文献   

13.
Microsomal estrogen synthetase (cytochrome P-450ES), also known as aromatase, was purified from fresh human placenta microsomes by DEAE-Trisacryl and testosterone-agarose chromatography. Estrogen synthetase assays were done with androstenedione as substrate, NADPH as electron donor, and a partially purified P-450 reductase from human placenta as the electron carrier. The specific cytochrome P-450 content of the purified P-450 was 0.67 nmol mg-1 of protein, and the preparation contained no cytochrome P-420. The absorbance maximum was 448.5 nm. The specific estrogen synthetase activity of the purified P-450ES fraction was 35 nmol min-1 nmol-1 of cytochrome P-450 or 23.3 nmol min-1 mg-1 of protein. The latter value shows a 179-fold purification with a yield greater than 1% in the two-step procedure. Kinetic constants for the reaction were measured with androstenedione as the aromatizable substrate. The Km was 1.4 nM and the Vmax was 37 nmol min-1 nmol-1 of P-450. The purified enzyme aromatized androstenedione and testosterone at identical rates; androstenedione gave only estrone, and testosterone gave only estradiol-17 beta. Dehydroepiandrosterone was not detectably aromatized or otherwise metabolized. Neither 16 alpha-hydroxytestosterone nor 16 alpha-hydroxyandrostenedione was aromatized. No hydroxysteroid dehydrogenase or reductase was detected in direct assays. No free reaction intermediates were detected in aromatization assay incubation mixtures. The purity of the product and the simplicity of the preparation recommend it for use in further studies of the enzyme.  相似文献   

14.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

15.
Chemical modification of cytochrome P-450 reductase was used to determine the involvement of charged amino acids in the interaction between the reductase and two forms of cytochrome P-450. Acetylation of 11 lysine residues of the reductase with acetic anhydride yielded a 20-40% decrease in the apparent Km of the reductase for cytochrome P-450b or cytochrome P-450c using either 7-ethoxycoumarin or benzphetamine as substrates. A 20-45% decrease in the Vmax was observed except for cytochrome P-450b with 7-ethoxycoumarin as substrate, where there was a 27% increase. Modification of carboxyl groups on the reductase with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and methylamine, glycine methyl ester, or taurine as nucleophiles inhibited the interaction with the cytochromes P-450. We were able to modify 4.0, 7.9, and 5.9 carboxyl groups using methylamine, glycine methyl ester, or taurine, respectively. The apparent Km for cytochrome P-450c or cytochrome P-450b was increased 1.3- to 5.2-fold in a reconstituted monooxygenase assay with 7-ethoxycoumarin or benzphetamine as substrate. There were varied effects on the Vmax. There was no significant change in the conformation of the reductase upon chemical modification with either acetic anhydride or EDC. These results strongly suggest that electrostatic interactions as well as steric constraints play a role in the binding and electron transfer step(s) between the reductase and cytochrome P-450.  相似文献   

16.
Aldrin epoxidation was studied in monooxygenase systems reconstituted from purified rat liver microsomal cytochrome P-450 or P-448, NADPH-cytochrome c reductase, dilauroylphosphatidylcholine and sodium cholate. Cytochrome P-450, purified from hepatic microsomes of phenobarbital-treated rats, exhibited a high rate of dieldrin formation. The low enzyme activity observed in the absence of the lipid and sodium cholate was increased threefold by addition of dilauroylphosphatidylcholine and was further stimulated twofold by addition of sodium cholate. The apparent Km for aldrin in the complete system was 7 +/- 2 microM. SKF 525-A, at a concentration of 250 microM, inhibited aldrin epoxidation by 65%, whereas 7,8-benzoflavone had no inhibitory effect at concentrations up to 250 microM. Addition of ethanol markedly increased epoxidase activity. The increase was threefold in the presence of 5% ethanol. When cytochrome P-448 purified from hepatic microsomes of 3-methylcholanthrene-treated rats was used, a very low rate of epoxidation was observed which was less than 3% of the activity mediated by cytochrome P-450 under similar assay conditions. Enzyme activity was independent of the lipid factor dilauroylphosphatidylcholine. The apparent Km for aldrin was 27 +/- 7 microM. The modifiers of monooxygenase reactions, 7,8-benzoflavone, SKF 525-A and ethanol, inhibited the activity mediated by cytochrome P-448. The I50 was 0.05, 0.2 and 800 mM, respectively. These results indicate that aldrin is a highly selective substrate for cytochrome P-450 species present in microsomes of phenobarbital-treated animals and is a poor substrate for cytochrome P-448. The two forms of aldrin epoxidase can be characterised by their turnover number, their apparent Km and their sensitivity to modifiers, like 7,8-benzoflavone and ethanol.  相似文献   

17.
A cytochrome P-450 from neonatal pig testicular microsomes was purified to homogeneity as judged by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels and by double diffusion on agar against antiserum raised in rabbits against the protein. The enzyme shows both 17 alpha-hydroxylase (Vmax = 4.6 nmol of product/min/nmol of P-450, Km = 1.5 microM) and C17,20 lyase (Vmax = 2.6 nmol of product/min/nmol of P-450, Km = 2.4 microM) activities. Both activities require NADPH and a flavoprotein P-450 reductase; microsomal P-450 reductase from pig and rat livers was used in these studies. The enzyme possesses a single subunit of molecular weight 59,000 +/- 1,000 as determined by electrophoresis on polyacrylamide with sodium dodecyl sulfate and by chromatography on sodium dodecyl sulfate-Sephadex. The enzyme is a glycoprotein and contains 8 nmol of heme/mg of protein and 40 nmol of phospholipid/mg of protein. All heme detected by pyridine hemochromogen is accounted for as P-450 by difference spectroscopy of the reduced P-450.carbon monoxide complex. This complex shows an absorbance maximum at 448 nm with no evidence of P-420. These studies raise the possibility that one microsomal protein (cytochrome P-450) may possess two enzymatic activities (hydroxylase and lyase).  相似文献   

18.
Kim MJ  Kim Y 《Molecules and cells》1999,9(5):470-475
Reduced form of nicotineamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase was solubilized from a microsomal fraction of Gentiana triflora flowers by 3-[(3 Cholamidopropyl)-dimethylammonio]-1-propane sulfonate detergent and purified to electrophoretic homogeneity. The purification was achieved by adenosine 2', 5'-bisphosphate-Sepharose chromatography, followed by high-performance anion-exchange chromatography. A Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. Western blot analysis showed that the purified protein cross-reacted with polyclonal antibody raised against rabbit anti-Gentiana triflora NADPH-cytochrome P450 reductase antibodies. The temperature and pH optimum for reduction of cytochrome c was 25 degrees C and 7.4 respectively. The Km values for the binding of NADPH and cytochrome c were 9.4 and 3.2 microM, respectively. In this paper, we present some results of the purification and partial characterization of microsomal NADPH-cytochrome P450 reductase from Gentiana triflora flowers.  相似文献   

19.
NADPH-cytochrome P-450 reductase was purified to apparent homogeneity from detergent-solubilized guinea pig liver microsomes. The reductase had a mol. wt of 78,000 and contained one mole each of FAD and FMN. Electron transfer activity to cytochrome c was optimal at a pH of 8.0 and an ionic strength of 0.43. The results of kinetic experiments were consistent with a ternary-complex mechanism for the interaction of the reductase with cytochrome c and NADPH. Km values for NADPH and cytochrome c were 3.1 and 26.7 microM, respectively. Inhibition by NADP+ and 2'-AMP was competitive with respect to NADPH; Ki values were 12.1 microM for NADP+ and 46.7 microM for 2'-AMP.  相似文献   

20.
A unique cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 is strongly induced by phenobarbital (Narhi, L. O., and Fulco, A. J. (1982) J. Biol. Chem. 257, 2147-2150) and many other barbiturates (Kim, B.-H., and Fulco, A. J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). This monooxygenase has now been purified to homogeneity from pentobarbital-induced bacteria as a single polypeptide with a molecular weight of 119,000 +/- 5,000 daltons. In the presence of NADPH and O2, it can catalyze the oxygenation of long chain fatty acids without the aid of any other protein. The enzyme has a catalytic center activity of 4,600 nmol of fatty acid oxygenated per nmol of P-450 (the highest activity yet reported for a P-450-dependent monooxygenase) and also functions as a highly active cytochrome c reductase in the presence of NADPH. The purified holoenzyme is a soluble protein containing 40 mol % hydrophobic amino acid residues and 1 mol each of FAD and FMN/mol of heme. It is isolated and purified in the low spin form but is converted to the high spin form in the presence of long chain fatty acids. The enzyme, which catalyzes the omega-2 hydroxylation of saturated fatty acids and the hydroxylation and epoxidation of unsaturated fatty acids has its highest affinity (Km = 2 +/- 1 microM) for the C15 and C16 chain lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号