首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Natural Occurrence of Turnip Mosaic Potyvirus in Allium ampeloprasum   总被引:1,自引:0,他引:1  
A. Gera    D.-E. Lesemann    J. Cohen    A. Franck    S. Levy  R. Salomon 《Journal of Phytopathology》1997,145(7):289-293
An isolate of turnip mosaic potyvirus (TuMV) was obtained from Allium ampeloprasum grown in commercial greenhouses in Israel. Symptoms on infected plants include systemic chlorosis and yellow stripes, accompanied by growth reduction. Leaves were distorted, often showing necrotic flecking. The virus was readily transmitted mechanically, and in a non-persistent manner by aphids, among Allium, Chenopodium. Gomphrena and some Nicotiana spp. Purified preparations contained numerous filamentous particles similar to those observed in crude extracts of infected leaves. Particles from crude plant extracts had a normal length of 806 nm. Cells of infected plants contained cylindrical cytoplasmic inclusions with pinwheel, scrolls and laminated aggregates which indicated the presence of a potyvirus of Edwardson's subgroup III. and which resemble those of turnip mosaic virus (TuMV), The virus reacted strongly with antiserum to typical isolates of TuMV in immunoelectron microscopy and western blotting but not with antisera to several other potyviruses. Based on serological reactivity, electron microscopy, aphid transmission and cytopathology, the virus was identified as an isolate of TuMV.  相似文献   

2.
As previously reported, narcissus latent virus (NLV) has flexuous filamentous particles measuring c. 650 nm × 13 nm, is manually transmissible to Nicotiana clevelandii and Tetragonia expansa, and is transmitted by the aphid Myzus persicae following brief acquisition access periods. In contrast to previous reports the virus particle protein has an apparent mol. wt of c. 45 kD. Moreover, infected cells in N. clevelandii leaves contain cytoplasmic inclusion bodies resembling those of potyviruses. In vitro translation of NLV RNA produced only one major product (mol. wt c. 25 kD) which was not precipitated by antisera to virus particle protein or to cytoplasmic inclusion protein. Antisera to 12 potyviruses and nine carlaviruses failed to react with sap containing NLV particles. Similarly antiserum to NLV particles did not react with particles of seven potyviruses or four carlaviruses. A weak reaction was detected between NLV particles and antiserum to particles of maclura mosaic virus (MMV), a virus which resembles NLV in particle morphology and particle-protein size, and in inducing pinwheel inclusions. The cytoplasmic inclusion proteins (CIPs) of NLV, MMV and from narcissus plants with yellow stripe symptoms were serologically inter-related. These proteins were also serologically related to, and had mol. wt similar to, the CIP of members of the potyvirus group. Particles with the size and antigenic specificity of those of NLV were found consistently in narcissus plants with yellow stripe disease. Narcissus latent and narcissus yellow stripe viruses therefore seem to be synonymous and, together with MMV, have properties distinct from those of any previously described virus group.  相似文献   

3.
Garlic (cv. Shani) was tested using single step RT‐PCR and digoxygenin (DIG) labelled dot‐blot for a number of viruses. Following sequence analysis it was shown that at least three different polymorphs of the potyvirus Onion yellow dwarf virus (OYDV) infect the same plant simultaneously, together with the potyvirus Leek yellow stripe virus (LYSV), the carlavirus Garlic common latent virus (GCLV) and a multitude of allexiviruses (Shallot virus X (ShVX) related viruses]. Several garlic plants free of all the viruses tested were obtained through meristem‐tip culture. Plants infected with single viruses or with different combinations of viruses were similarly obtained. Meristem‐tip culture was confirmed as a satisfactory method of virus eradication, while thermotherapy treatment given to mother plantlets before meristem excision was found to specifically antagonise OYDV eradication. This work uses molecular methods for the first time to examine the effectiveness of meristem‐tip culture for the eradication of multiple viruses from garlic.  相似文献   

4.
The multifunctional protein translationally controlled tumour protein (TCTP) was previously identified as necessary for infection by the potyvirus pepper yellow mosaic virus. Using turnip mosaic virus (TuMV) as a model to study potyvirus biology, we confirmed that TCTP has a positive effect on virus infection. Living cell confocal microscopy demonstrated that TCTP colocalises with 6K2-tagged replication vesicles and with a perinuclear globular structure typically observed during potyvirus infection. Also, TCTP silenced protoplasts showed reduced virus accumulation, quantified by qRT-PCR, which suggests an effect on virus replication, translation or other intracellular process. Finally, TCTP silencing in plants reduced the accumulation of two species belonging to Orthotospovirus and a Begomovirus genus, which are not closely related to potyviruses. The results suggest that TCTP is a general susceptibility factor to several unrelated viruses.  相似文献   

5.
The translation initiation factors 4E are a small family of major susceptibility factors to potyviruses. It has been suggested that knocking out these genes could provide genetic resistance in crops when natural resistance alleles, which encode functional eIF4E proteins, are not available. Here, using the well-characterized Arabidopsis thaliana–potyvirus pathosystem, we evaluate the resistance spectrum of plants knocked out for eIF4E1, the susceptibility factor to clover yellow vein virus (ClYVV). We show that besides resistance to ClYVV, the eIF4E1 loss of function is associated with hypersusceptibility to turnip mosaic virus (TuMV), a potyvirus known to rely on the paralog host factor eIFiso4E. On TuMV infection, plants knocked out for eIF4E1 display striking developmental defects such as early senescence and primordia development stoppage. This phenotype is coupled with a strong TuMV overaccumulation throughout the plant, while remarkably the levels of the viral target eIFiso4E remain uninfluenced. Our data suggest that this hypersusceptibility cannot be explained by virus evolution leading to a gain of TuMV aggressiveness. Furthermore, we report that a functional eIF4E1 resistance allele engineered by CRISPR/Cas9 base-editing technology successfully circumvents the increase of TuMV susceptibility conditioned by eIF4E1 disruption. These findings in Arabidopsis add to several previous findings in crops suggesting that resistance based on knocking out eIF4E factors should be avoided in plant breeding, as it could also expose the plant to the severe threat of potyviruses able to recruit alternative eIF4E copies. At the same time, it provides a simple model that can help understanding of the homeostasis among eIF4E proteins in the plant cell and what makes them available to potyviruses.  相似文献   

6.
A new virus, peanut stripe (PStV), isolated from groundnut (Arachis hypogaea) in the USA, induced characteristic striping, discontinuous vein banding along the lateral veins, and oakleaf mosaic in groundnut. The virus was also isolated from germplasm lines introduced from the People's Republic of China. PStV was transmitted by inoculation of sap to nine species of the Chenopodiaceae, Leguminosae, and Solanaceae; Chenopodium amaranticolor was a good local lesion host. PStV was also transmitted by Aphis craccivora in a non-persistent manner and through seed of groundnut up to 37%. The virus remained infective in buffered plant extracts after diluting to 10-3, storage for 3 days at 20°C, and heating for 10 min at 60°C but not 65°C. Purified virus preparations contained flexuous filamentous particles c. 752 nm long, which contained a major polypeptide of 33 500 daltons and one nucleic acid species of 3·1 × 106 daltons. In ELISA, PStV was serologically related to blackeye cowpea mosaic, soybean mosaic, clover yellow vein, and pepper veinal mottle viruses but not to peanut mottle, potato Y, tobacco etch, and peanut green mosaic viruses. On the basis of these properties PStV is identified as a new potyvirus in groundnut.  相似文献   

7.
8.
Turnip mosaic virus (TuMV) and cauliflower mosaic virus (CaMV) have been found infecting field crops of winter oilseed rape (Brassica napus ssp. oleifera) in South Warwickshire. Other viruses found include broccoli necrotic yellows virus (BNYV) and a member of the beet western yellows virus group. Systemic leaf symptoms caused by TuMV varied within and between cultivars; the three predominant reaction types were classified as necrotic, mosaic and immune. Some recently introduced cultivars of oilseed rape were more severely affected by TuMV infection than older cultivars. Reactions to CaMV were less varied and immunity was not found. The seed yield from TuMV and CaMV-infected plants was less than that of healthy control plants. This effect was due to infected plants producing either fewer seeds, smaller seeds or both. Germination of seeds from infected plants was unaffected if sown soon after harvest. After storage for one year the germination of seed from a virus infected plant was significantly less than that of seed from a virus-free plant. All commercial cultivars tested were experimentally susceptible to turnip yellow mosaic virus (TYMV) and some American strains of cucumber mosaic virus (CMV).  相似文献   

9.
We have identified monogenic dominant resistance to azuki bean mosaic poty virus (AzMV), passionfruit woodiness potyvirus-K (PWV-K), zucchini yellow mosaic potyvirus (ZYMV), and a dominant factor that conditioned lethal necrosis to Thailand Passiflora potyvirus (ThPV), in Phaseolus vulgaris Black Turtle Soup 1. Resistance to AzMV, PWV-K, ZYMV, watermelon mosaic potyvirus, cowpea aphid-borne mosaic potyvirus, blackeye cowpea mosaic potyvirus, and lethal necrosis to soybean mosaic potyvirus and ThPV cosegregated as a unit with the I gene for resistance to bean common mosaic potyvirus.  相似文献   

10.
We report a survey of four viruses (beet western yellows luteovirus (BWYV), cauliflower mosaic caulimovirus (CaMV), turnip mosaic potyvirus (TuMV), turnip yellow mosaic tymovirus (TYMV)) in five natural populations of Brassica oleracea in Dorset (UK). All four viruses were common; 43% of plants were infected with BWYV, 60% with CaMV, 43% with TuMV and 18% with TYMV. For each virus there were significant differences in the proportion of infected plants among populations, which were not completely explained by differences in the age of plants. Multiple virus infections were prevalent, with 54% of plants having two or more virus types. There were statistically significant associations between pairs of viruses. The CaMV was positively associated with the other three viruses, and BWYV was also positively associated with TuMV. There was no detectable association between BWYV and TYMV, whereas TuMV and TYMV were negatively associated. We suggest these associations result from BWYV, CaMV and TuMV having aphid vectors in common, as aphids are attracted to plants that already have a virus infection. Infected plants were distributed randomly or were very weakly aggregated within populations. The implications of widespread multiple virus infections in natural plant populations are discussed with respect to the release of transgenic plants expressing virus-derived genes.  相似文献   

11.
Resistance of transformed and non-transformed spring oilseed rape cv. HM-81 to the infection with cauliflower mosaic virus (CaMV), turnip yellow mosaic virus (TYMV) and turnip mosaic virus (TuMV) was studied, to determine the influence of transformation on susceptibility of plants to viruses. For experiments the non-segregating R 1 generation of primary transformant HM-81-JZ and control plants of cv. HM-81 were used. The primary transformant was obtained by inoculation of stems withAgrobacterium rhizogenes 15834. All transformed plants of R 1 generation had typically „transformed“ phenotype. No significant differences were revealed in the resistance of both transformed and non-transformed plants to each virus, as proved by qualitative and quantitative ELISA and visual evaluation of symptoms. Transformed plants infected with turnip yellow mosaic virus showed significantly lower reduction of green mass yield than non-transformed. In the case of CaMV and TuMV infection reduction of yield of transformed and non-transformed plants was almost the same.  相似文献   

12.
The present work describes the identification and characterization of a potyvirus isolated from siratro (Macroptilium atropurpureum Urb.) in the north‐west region of the State of São Paulo, Brazil. The virus was transmitted by mechanical inoculation. Its host range was restricted mainly to members of the Fabaceae. A cDNA fragment of about 930 bp was amplified by RT/PCR, cloned and sequenced. The fragment, which included the coat protein gene, had amino acid identity percentages between 88 and 98% with isolates of Bean common mosaic virus (BCMV). Phylogenetic analysis grouped the siratro potyvirus and BCMV isolates in 99% of the replicates, including Azuki mosaic virus, Dendrobium mosaic virus, Blackeye cowpea mosaic virus and Peanut stripe virus, which have been classified as BCMV strains. This is the first citation on the presence of BCMV in siratro plants in Brazil.  相似文献   

13.
Hypochoeris mosaic virus (HMV) is common in Hypochoeris radicata (‘cat's ear’) in western Canada. It infected 10 of 53 mechanically inoculated species in five of twelve families, but was not transmitted by aphids or through seed or soil. Sap from infected Nicotiana clevelandii was sometimes infective after dilution to 10-1 and occasionally 102, after 10 min at 45 but not 50°C, and after 1 but not 2 days at 20°C. Infectivity of crude nucleic acid extracts from infected leaves was rapidly abolished by RNase but not by DNase. Host sap contained very few rod-shaped particles or particle fragments mostly 21.0–22.5 nm in diameter, and up to 420 nm long but with predominant lengths of 120–140 and 240–260 nm. Many rods in purified virus preparations were less than 240 nm long, and the majority were c. 140 nm or shorter. The particles had a helical substructure with a pitch of 2.58 nm and contained a single type of protein of estimated mol. wt 24.5 × 103. HMV showed no serological relationship to eight morphologically similar viruses (beet necrotic yellow vein, broad bean necrosis, barley stripe mosaic, peanut clump, potato mop-top, Nicotiana velutina mosaic, wheat soil-borne mosaic and defective strains of tobacco mosaic). It is probably a hitherto undescribed tobamovirus.  相似文献   

14.
Nasturtium mosaic virus, hitherto considered to be a carlavirus, was shown to be a member of the potyvirus group by its morphology, capsid protein size, positive reaction with potyvirus group antiserum and the presence in its host of cytoplasmic inclusions ("pinwheels"). It is serologically unrelated to five other well characterized potyviruses.  相似文献   

15.
Isolation and characterization of viruses infecting garlic in Venezuela indicate the presence of onion yellow dwarf virus [OYDV] in most field-grown plants of the clones Criollo venezolano, Morado peruano and Blanco, while 14% of the Criollo venezolano plants showed co-infection of leek yellow stripe virus [LYSV] and OYDV. In leaf tissues OYDV showed an average concentration of 165 μg/g fresh wt., the value being similar among clones. In Criollo venezolano plants co-infected by LYSV and OYDV the concentration of the former was three fold lower than that of OYDV. Serological tests on leaf extracts of garlic plants indicated the absence of the garlic yellow streak virus [GYSV], shallot latent virus [SLV] and garlic latent virus [GLV] in the clones Criollo venezolano, Morado peruano and Blanco. GLV was found to infect plants of the clone Gigante. Physicochemical analysis of purified GLV strongly supports the inclusion of this virus as a definitive member of the carlavirus group.  相似文献   

16.
Ullucus tuberosus (Basellaceae) plants from 12 locations in the Andean highlands of Peru and Bolivia contained complexes of either three or four viruses. Specimens from six sites in Peru contained a potexvirus, a tobamovirus, a potyvirus and a comovirus, but those from another location lacked the potexvirus. All samples from five sites in Bolivia lacked the tobamovirus. The potexvirus (PMV/U) is a strain of papaya mosaic virus differing slightly from the type strain (PMV/T) in inducing milder symptoms in some common hosts and failing to infect a few other species. It symptomlessly infected U. tuberosus, and infected 15 of 29 species from seven of nine other families. PMV/U showed a close serological relationship to PMV/T and to boussingaultia mosaic virus and a distant relationship to commelina virus X, but it is apparently unrelated to any of ten other potexviruses. The tobamovirus (TMV/U) induced symptomless or inconspicuous infection in U. tuberosus, and infected 21 of 30 species from six of eight other families. It showed a very distant serological relationship to some strains of ribgrass mosaic, tobacco mosaic and tomato mosaic viruses, but failed to react with antisera to cucumber green mottle mosaic, frangipani mosaic, odontoglossum ringspot and sunn-hemp mosaic viruses. The potyvirus, tentatively designated ullucus mosaic virus (UMV), alone in U. tuberosus induced leaf symptoms indistinguishable from the chlorotic mottling and distortion found in naturally infected plants. UMV infected 12 of 20 species from four other families, and was transmitted in the non-persistent manner by Myzus persicae. It showed a distant serological relationship to only two (bidens mottle and alstroemeria mosaic) of 25 members or possible members of the potyvirus group tested. Some hosts and properties of the comovirus are described in an accompanying paper. None of the four viruses infected potato (Solanum tuberosum) and, with the possible exception of UMV, they differed from viruses reported previously to infect three other vegetatively propagated Andean crops (Oxalis tuberosa, Arracacia xanthorrhiza and Tropaeolum tuberosum).  相似文献   

17.
The genomes of a representative world-wide collection of 32 Turnip mosaic virus (TuMV) isolates were sequenced and these, together with six previously reported sequences, were analysed. At least one-fifth of the sequences were recombinant. In phylogenetic analyses, using genomic sequences of Japanese yam mosaic virus as an outgroup, the TuMV sequences that did not show clear recombination formed a monophyletic group with four well-supported lineages. These groupings correlated with differences in pathogenicity and provenance; the sister group to all others was of Eurasian B-strain isolates from nonbrassicas, and probably represents the ancestral TuMV population, and the most recently 'emerged' branch of the population was probably that of the BR-strain isolates found only in east Asia. Eight isolates, all from east Asia, were clear recombinants, probably the progeny of recent recombination events, whereas a similar number, from other parts of the world, were seemingly older recombinants. This difference indicates that the presence of clear recombinants in a subpopulation may be a molecular signature of a recent 'emergence'.  相似文献   

18.
Isolation and characterization of viruses infecting garlic in Venezuela indicate the presence of onion yellow dwarf virus [OYDV] in most field-grown plants of the clones Criollo venezolano, Morado peruano and Blanco, while 14% of the Criollo venezolano plants showed co-infection of leek yellow stripe virus [LYSV] and OYDV. In leaf tissues OYDV showed an average concentration of 165 μg/g fresh wt., the value being similar among clones. In Criollo venezolano plants co-infected by LYSV and OYDV the concentration of the former was three fold lower than that of OYDV. Serological tests on leaf extracts of garlic plants indicated the absence of the garlic yellow streak virus [GYSV], shallot latent virus [SLV] and garlic latent virus [GLV] in the clones Criollo venezolano, Morado peruano and Blanco. GLV was found to infect plants of the clone Gigante. Physicochemical analysis of purified GLV strongly supports the inclusion of this virus as a definitive member of the carlavirus group.  相似文献   

19.
The gene encoding the C-terminal protease domain of the nuclear inclusion protein a (NIa) of tobacco vein mottling virus (TVMV) was cloned from an isolated virus particle and expressed as a fusion protein with glutathione S-transferase in Escherichia coli XL1-blue. The 27-kDa protease was purified from the fusion protein by glutathione affinity chromatography and Mono S chromatography. The purified protease exhibited the specific proteolytic activity towards the nonapeptide substrates, Ac-Glu-Asn-Asn-Val-Arg-Phe-Gln-Ser-Leu-amide and Ac-Arg-Glu-Thr-Val-Arg-Phe-Gln-Ser-Asp-amide, containing the junction sequences between P3 protein and cylindrical inclusion protein and between nuclear inclusion protein b and capsid protein, respectively. The Km and kcat values were about 0.2 mM and 0.071 s–1, respectively, which were approximately five-fold lower than those obtained for the NIa protease of turnip mosaic potyvirus (TuMV), suggesting that the TVMV NIa protease is different in the binding affinity as well as in the catalytic power from the TuMV NIa protease. In contrast to the NIa proteases from TuMV and tobacco etch virus, the TVMV NIa protease was not autocatalytically cleaved into smaller proteins, indicating that the C-terminal truncation is not a common phenomenon occurring in all potyviral NIa proteases. These results suggest that the TVMV NIa protease has a unique biochemical property distinct from those of other potyviral proteases.  相似文献   

20.
Narcissus mosaic virus   总被引:1,自引:0,他引:1  
Narcissus mosaic virus (NMV) is widespread in British crops of trumpet, large-cupped and double daffodils, but was not found in Narcissus jonquilla or N. tazzeta. Many commercial daffodil cultivars seem totally infected, and roguing or selection is therefore impracticable. Strict precautions by breeders and raisers to prevent infection of new cultivars is recommended. Healthy daffodil seedlings were readily infected with NMV by mechanical inoculation, but the virus was not detected in them until 17 months after inoculation, when a mild mosaic appeared. NMV infected twenty-eight of fifty-three inoculated plant species; only five (Nicotiana clevelandii, Gomphrena globosa, Medicago sativa, Trifolium campestre and T. incarnatum) were infected systemically, and NMV was cultured in these and assayed in Chenopodium amaranticolor and Tetragonia expansa. The virus was not transmitted to and from G. globosa or N. clevelandii by three aphid species, or through the seeds of Narcissus, G. globosa and N. clevelandii but was transmitted by handling. G. globosa sap was infective at a dilution of 10 -5 but not at 10-6, when heated for 10 min. at 70° C. but not at 75° C, and after 12 weeks at 18° C, or 36 weeks at 0–4° C. NMV withstood freezing in infected leaves and sap, and purified preparations and freeze-dried sap remained infective for over 2 years. NMV was precipitated without inactivation by ammonium sulphate (313 g./l.) but was better purified by differential centrifugation of phosphate-buffer extracts treated with n-butanol. Such virus preparations from G. globosa, N. clevelandii, C. amaranticolor and T. expansa were highly infective, serologically active, produced a specific light-scattering zone when centrifuged in density-gradients and contained numerous unaggregated particles with a commonest length of 548–568 mμ. Antisera prepared in rabbits had precipitin tube titres of 1/4096. NMV was detected in three experimental hosts but not in narcissus sap. Unlike some viruses with elongated particles, NMV precipitates with antiserum in agar-gel. Purified preparations reacted with antiserum to a Dutch isolate of NMV but not with antisera to seven other viruses having similar particles and in vitro properties, or to narcissus yellow stripe virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号