首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seed plants and algae have two distinct FtsZ protein families, FtsZ1 and FtsZ2, involved in plastid division. Distinctively, seed plants and mosses contain two FtsZ2 family members (FtsZ2-1 and FtsZ2-2) thus raising the question of the role of these FtsZ2 paralogs in plants. We show that both FtsZ2 paralogs, in addition to being present in the stroma, are associated with the thylakoid membranes and that association is developmentally regulated. We also show that several FtsZ2-1 isoforms are present with distinct intra-plastidial localization. Mutant analyses show that FtsZ2-1 is essential for chloroplast division and that FtsZ2-2 plays a specific role in chloroplast morphology and internal organisation in addition to participating in chloroplast partition.  相似文献   

2.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

3.
Zhao Q  Brkljacic J  Meier I 《The Plant cell》2008,20(6):1639-1651
Ran GTPase plays essential roles in multiple cellular processes, including nucleocytoplasmic transport, spindle formation, and postmitotic nuclear envelope (NE) reassembly. The cytoplasmic Ran GTPase activating protein RanGAP is critical to establish a functional RanGTP/RanGDP gradient across the NE and is associated with the outer surface of the NE in metazoan and higher plant cells. Arabidopsis thaliana RanGAP association with the root tip NE requires a family of likely plant-specific nucleoporins combining coiled-coil and transmembrane domains (CC-TMD) and WPP domain-interacting proteins (WIPs). We have now identified, by tandem affinity purification coupled with mass spectrometry, a second family of CC-TMD proteins, structurally similar, yet clearly distinct from the WIP family, that is required for RanGAP NE association in root tip cells. A combination of loss-of-function mutant analysis and protein interaction data indicates that at least one member of each NE-associated CC-TMD protein family is required for RanGAP targeting in root tip cells, while both families are dispensable in other plant tissues. This suggests an unanticipated complexity of RanGAP NE targeting in higher plant cells, contrasting both the single nucleoporin anchor in metazoans and the lack of targeting in fungi and proposes an early evolutionary divergence of the underlying plant and animal mechanisms.  相似文献   

4.

Background

Different cell types have distinctive patterns of chromosome positioning in the nucleus. Although ectopic affinity-tethering of specific loci can be used to relocate chromosomes to the nuclear periphery, endogenous nuclear envelope proteins that control such a mechanism in mammalian cells have yet to be widely identified.

Results

To search for such proteins, 23 nuclear envelope transmembrane proteins were screened for their ability to promote peripheral localization of human chromosomes in HT1080 fibroblasts. Five of these proteins had strong effects on chromosome 5, but individual proteins affected different subsets of chromosomes. The repositioning effects were reversible and the proteins with effects all exhibited highly tissue-restricted patterns of expression. Depletion of two nuclear envelope transmembrane proteins that were preferentially expressed in liver each reduced the normal peripheral positioning of chromosome 5 in liver cells.

Conclusions

The discovery of nuclear envelope transmembrane proteins that can modulate chromosome position and have restricted patterns of expression may enable dissection of the functional relevance of tissue-specific patterns of radial chromosome positioning.  相似文献   

5.
A series of extraction procedures were applied to avian nuclei which allowed us to define three types of association of v-myc- and c-myc-encoded proteins with nuclei: (i) a major fraction (60 to 90%) which is retained in DNA- and RNA-depleted nuclei after low- and high-salt extraction, (ii) a small fraction (1%) released during nuclease digestion of DNA in intact nuclei in the presence of low-salt buffer, and (iii) a fraction of myc protein (less than 10%) extractable with salt or detergents and found to have affinity for both single- and double-stranded DNA. Immunofluorescence analysis with anti-myc peptide sera on cells extracted sequentially with nucleases and salts confirmed the idea that myc proteins were associated with a complex residual nuclear structure (matrix-lamin fraction) which also contained avian nuclear lamin protein. Dispersal of myc proteins into the cytoplasm was found to occur during mitosis. Both c-myc and v-myc proteins were associated with the matrix-lamin, suggesting that the function of myc may relate to nuclear structural organization.  相似文献   

6.
Studies of the role of tuberous sclerosis complex (TSC) proteins (TSC1/TSC2) in pathology have focused mainly on their capacity to regulate translation and cell growth, but their relationship with alterations of cellular structures and the cell cycle is not yet fully understood. The transforming acidic coiled-coil (TACC) domain-containing proteins are central players in structures and processes connected to the centrosome. Here, TACC3 interactome mapping identified TSC2 and 15 other physical interactors, including the evolutionary conserved interactions with ch-TOG/CKAP5 and FAM161B. TACC3 and TSC2 co-localize and co-purify with components of the nuclear envelope, and their deficiency causes morphological alterations of this structure. During cell division, TACC3 is necessary for the proper localization of phospho-Ser939 TSC2 at spindle poles and cytokinetic bridges. Accordingly, abscission alterations and increased frequency of binucleated cells were observed in Tacc3- and Tsc2-deficient cells relative to controls. In regulating cell division, TSC2 acts epistatically to TACC3 and, in addition to canonical TSC/mTOR signaling and cytokinetic associations, converges to the early mitotic checkpoint mediated by CHFR, consistently with nuclear envelope associations. Our findings link TACC3 to novel structural and cell division functions of TSC2, which may provide additional explanations for the clinical and pathological manifestations of lymphangioleiomyomatosis (LAM) disease and TSC syndrome, including the greater clinical severity of TSC2 mutations compared to TSC1 mutations.  相似文献   

7.
Compared to research in the animal field, the plant NE has been clearly under-investigated. The available data so far indicate similarities as well as striking differences that raise interesting questions about the function and evolution of the NE in different kingdoms. Despite a seemingly similar structure and organization of the NE, many of the proteins that are integral components of the animal NE appear to lack homologues in plant cells. The sequencing of the Arabidopsis genome has not led to the identification of homologues of animal NE components, but has indicated that the plant NE must have a distinct protein composition different from that found in metazoan cells. Besides providing a selective barrier between the nucleoplasm and the cytoplasm, the plant NE functions as a scaffold for chromatin but the scaffolding components are not identical to those found in animal cells. The NE comprises an MTOC in higher plant cells, a striking difference to the organization of microtubule nucleation in other eukaryotic cells. Nuclear pores are present in the plant NE, but identifiable orthologues of most animal and yeast nucleoporins are presently lacking. The transport pathway through the nuclear pores via the action of karyopherins and the Ran cycle is conserved in plant cells. Interestingly, RanGAP is sequestered to the NE in plant cells and animal cells, yet the targeting domains and mechanisms of attachment are different between the two kingdoms. At present, only a few proteins localized at the plant NE have been identified molecularly. Future research will have to expand the list of known protein components involved in building a functional plant NE.  相似文献   

8.
The major rat ventral prostate androgen-dependent nuclear proteins were studied using isolated nuclei, nuclear matrix and nuclear envelope fractions. Nuclear and subnuclear fractions obtained were characterized by electron microscopy and SDS-polyacrylamide gel electrophoresis. A group of approximately 20 kDa peptides is demonstrated to be present in nuclei, nuclear matrices and nuclear envelopes from normal prostate. Time course experiments indicate that the 20 kDa peptides become drastically reduced after 7 or 10 days following castration and are incompletely restored after 3 daily testosterone injections. Lectin binding studies demonstrate that the 20 kDa peptides bind both to Concanavalin A and Wheat Germ Agglutinin. These peptides represent the major nuclear Concanavalin A binding glycoproteins from normal prostate nuclei and nuclear matrices.  相似文献   

9.
10.
N-Ethylmaleimide-sensitive factor (NSF) is an ATPase involved in many membrane fusion events within the exocytic and endocytotic pathways. In the present study we showed that NSF is associated with the nuclear envelope. Golgi-associated NSF was released from membranes upon incubation with Mg(2+)-ATP, reflecting the disassembly of a complex consisting of NSF, soluble NSF attachment proteins (SNAPs), and SNAP receptors (SNAREs). In contrast nuclear envelope-associated NSF in interphase cells was not released by the same treatment. During mitosis, however, it was released from nuclear membranes by Mg(2+)-ATP. These results suggest that the binding mode of nuclear membrane-associated NSF changes during the cell cycle.  相似文献   

11.
Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation.  相似文献   

12.
The role of MYC proteins in somatic stem and progenitor cells during development is poorly understood. We have taken advantage of a chick in vivo model to examine their role in progenitor cells of the developing neural tube. Our results show that depletion of endogenous MYC in radial glial precursors (RGPs) is incompatible with differentiation and conversely, that overexpression of MYC induces neurogenesis independently of premature or upregulated expression of proneural gene programs. Unexpectedly, the neurogenic function of MYC depends on the integrity of the polarized neural tissue, in contrast to the situation in dissociated RGPs where MYC is mitogenic. Within the polarized RGPs of the neural tube, MYC drives differentiation by inhibiting Notch signaling and by increasing neurogenic cell division, eventually resulting in a depletion of progenitor cells. These results reveal an unexpected role of MYC in the control of stemness versus differentiation of neural stem cells in vivo.  相似文献   

13.
All identified membrane fusion proteins are transmembrane proteins. In the present study, we explored the post-mitotic reassembly of the NE (nuclear envelope). The proteins that drive membrane rearrangements in NE assembly remain unknown. To determine whether transmembrane proteins are prerequisite components of this fusion machinery, we have focused on nuclear reconstitution in a cell-free system. Mixing of soluble interphase cytosolic extract and MV (membrane vesicles) from amphibian eggs with chromatin results in the formation of functional nuclei. We replaced MV and cytosol with protein-free phosphatidylcholine LS (liposomes) that were pre-incubated with interphase cytosol. While later stages of NE assembly yielding functional nucleus did not proceed without integral proteins of MV, LS-associated cytosolic proteins were sufficient to reconstitute membrane targeting to the chromatin and GTP-dependent lipid mixing. Binding involved LS-associated A-type lamin, and fusion involved Ran GTPase. Thus in contrast with post-fusion stages, fusion initiation in NE assembly, like membrane remodelling in budding and fission, does not require transmembrane proteins.  相似文献   

14.
Nuclear envelopes and nuclear matrices were isolated from rat liver nuclei. Although differences in polypeptide composition of the structures are evident on SDS gel electrophoresis, they have an almost identical distribution of concanavalin A-binding glycoproteins. These matrix-associated concanavalin A-binding glycoproteins derive entirely from the nuclear envelope and are recovered almost quantitatively in the matrix. They constitute easily identifiable markers for nuclear envelope association with matrix or other nuclear subfractions. Surface labelling of nuclei with 125I using solid-phase lactoperoxidase further confirmed that a large number of envelope-associated nuclear surface proteins co-isolate with the matrix. Protein kinase activity, as well as endogenous substrates for the kinase(s) are shown to be the same in both envelopes and matrix. Envelope-derived proteins and glycoproteins may comprise a substantial proportion of total matrix protein.  相似文献   

15.
In animals and yeast, the small GTP-binding protein Ran has multiple functions - it is involved in mediating (i) the directional passage of proteins and RNA through the nuclear pores in interphase cells; and (ii) the formation of spindle asters, the polymerization of microtubules, and the re-assembly of the nuclear envelope in mitotic cells. Nucleotide binding of Ran is modulated by a series of accessory proteins. For instance, the hydrolysis of RanGTP requires stimulation by the RanGTPase protein RanGAP. Here we report the complementation of the yeast RanGAP mutant rna1 with Medicago sativa and Arabidopsis thaliana cDNAs encoding RanGAP-like proteins. Confocal laser microscopy of Arabidopsis plants overexpressing chimeric constructs of GFP with AtRanGAP1 and 2 demonstrated that the fusion protein is localized to patchy areas at the nuclear envelope of interphase cells. In contrast, the cellular distribution of RanGAPs in synchronized tobacco cells undergoing mitosis is characteristically different. Double-immunofluorescence shows that RanGAPs are co-localized with spindle microtubules during anaphase, with the microtubular phragmoplast and the surface of the daughter nuclei during telophase. Co-assembly of RanGAPs with tubulin correlates with these in vivo observations. The detected localization pattern is consistent with the postulated function of plant RanGAPs in the regulation of nuclear transport during interphase, and suggests a role for these proteins in the organization of the microtubular mitotic structures.  相似文献   

16.
Members of the Wnt gene family are proposed to function in both normal development and differentiation as well as in mammary tumorigenesis. To understand the function of Wnt proteins in these two processes, we present here a biochemical characterization of seven Wnt family members. For these studies, AtT-20 cells, a neuroendocrine cell line previously shown to efficiently process and secrete Wnt-1, was transfected with expression vectors encoding Wnt family members. All of the newly characterized Wnt proteins are glycosylated, secreted proteins that are tightly associated with the cell surface or extracellular matrix. We have also identified native Wnt proteins in retinoic acid-treated P19 embryonal carcinoma cells, and they exhibit the same biochemical characteristics as the recombinant proteins. These data suggest that Wnt family members function in cell to cell signaling in a fashion similar to Wnt-1.  相似文献   

17.
Vascular endothelial cells (EC) are one of the initial cells exposed to decreases in blood oxygen tension. Bovine EC respond not only by altering secretion of vasoactive, mitogenic, and thrombogenic substances, but also by developing adaptive mechanisms in order to survive acute and chronic hypoxic exposures. EC exposed to hypoxia in vitro upregulate a unique set of stress proteins of Mr 34, 36, 39, 47, and 56 kD. Previous studies have shown that these proteins are cell associated, upregulated in a time and oxygen-concentration dependent manner, and are distinct from heat shock (HSPs) and glucose-regulated proteins (GRPs). To further characterize these hypoxia-associated proteins (HAPs), we investigated their upregulation in human EC from various vascular beds and compared this to possible HAP upregulation in other cell types. Human aortic, pulmonary artery, and microvascular EC upregulated the same set of proteins in response to hypoxia. In comparison, neither lung fibroblasts, pulmonary artery smooth muscle cells, pulmonary alveolar type II cells, nor renal tubular epithelial cells upregulated proteins of these Mr. Instead, most of these cell types induced synthesis of proteins of Mrs corresponding to either HSPs, GRPs, or both. Further studies demonstrated that exposure of EC to related stresses such as cyanide, 2-deoxyglucose, hydrogen peroxide, dithiothreitol, and glucose deprivation did not cause upregulation of HAPs. Evaluation of cellular damage during hypoxia using phase-contrast microscopy, trypan blue exclusion, chromium release, and adherent cell counts showed that EC survived longer with less damage than any of the above cell types. The induction of HAPs, and the lack of induction of HSPs or GRPs, by EC in response to hypoxia may be related to their unique ability to tolerate hypoxia for prolonged periods. © 1993 Wiley-Liss, Inc.  相似文献   

18.
In bacteria, cytokinesis is mediated by a ring-shaped multiprotein complex, called divisome. While some of its components are widely conserved, others are restricted to certain bacterial lineages. FtsN is the last essential cell division protein to localize to the division septum in Escherichia coli and is poorly conserved outside the enteric bacteria. We have identified a homologue of FtsN in the α-proteobacterium Caulobacter crescentus and show that it is essential for cell division. C. crescentus FtsN is recruited to the divisome significantly after cell division initiates and remains associated with the new cell poles after cytokinesis is finished. All determinants necessary for localization and function are located in a largely unstructured periplasmic segment of the protein. Its conserved SPOR-domain, by contrast, is dispensable for cytokinesis, although it supports targeting of FtsN to the division site. Interestingly, the SPOR-domain is recruited to the division plane when produced in isolated form and retains its localization potential in a heterologous host background. Searching for proteins that share the characteristic features of FtsN from E. coli and C. crescentus , we identified FtsN-like cell division proteins in β- and δ-proteobacteria, suggesting that FtsN is widespread among bacteria, albeit highly variable at the sequence level.  相似文献   

19.
20.
T Lotan  N Ori  R Fluhr 《The Plant cell》1989,1(9):881-887
The accumulation of pathogenesis-related proteins (PR) in tobacco leaves has been casually related to pathogen and specific physiological stresses. The known enzymatic function of some of these proteins is potentially antimicrobial. By using antibodies specific to three classes of pathogenesis-related proteins, we examined tobacco plants during their normal growth. The pathogenesis-related proteins accumulated during the normal development of the tobacco flower. The PR-1 class of proteins (biological function unknown) is located in sepal tissue. PR-P, Q polypeptides are endochitinases and are present in pedicels, sepals, anthers, and ovaries. A glycoprotein serologically related to the PR-2,N,O class is a (1,3)-beta-glucanase and is present in pistils. Differential appearance during flower development, in situ localization, and post-translational processing of floral pathogenesis-related proteins point to a hitherto unsuspected function these classes of pathogenesis-related proteins play in the normal process of flowering and reproductive physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号