首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The report that gelonin cross-linked with monoclonal antibodies with the use of 2-iminothiolane (2-IT) exhibited higher cytotoxicity than the conjugates prepared with the use of N-succinimidyl-3-(2-pyridylthio) propionate (SPDP) alone, has prompted us to investigate the effect of epsilon-NH2 group modification with 2-IT on the ribosome-inactivating property (RIP) of gelonin. The purified gelonin was modified with 2-IT at a different molar ratio and their effects on immunoreactivity and ribosome-inactivating property were compared with those of N-succinimidyl 6-[3-(2-pyridyldithio) propionamido] hexanoate (long chain-SPDP) and SPDP modified gelonin derivatives. Modification of single amino group with 2-IT results in about 25-50% inhibition of immunoreactivity and 60-70% loss of protein synthesis inhibition activity. Modification of 2-3 amino groups further hampers both immunoreactivity and protein synthesis inhibition property of gelonin. Both the long chain-SPDP with SPDP modifications showed more pronounced effects on immunoreactivity and RIP activity as compared to the similar ratio of 2-IT modification(s). It may, therefore, be concluded that the positive charge plays an important role in the immunological as well as the protein synthesis inhibitory effect of gelonin.  相似文献   

2.
Chitosan-N-trimethylaminoethylmethacrylate chloride (CS-TM) copolymers with different quaternization degrees (DQ, 30 and 50%) were synthesized and further modified with methoxypoly(ethylene glycol) (mPEG) of different molecular weights (MW, 2 and 5 kDa). The hydrophilicity of the resulting copolymers was significantly increased as evidenced by decreased contact angles. PEGylation with higher mPEG MW could significantly reduce the hemolytic potential, protein adsorption, cytotoxicity and intestinal mucosal damage of CS-TM (DQ of 50%, CS-TM50). PEGylation resulted in a considerable increase in the release of reducing sugars following 84-day lysozyme-catalyzed degradation, and an increase in mPEG MW led to a faster degradation of CS-TM50. The antioxidant activity of CS-TM50 was superior to that of PEGylated CS-TM50, exhibiting dose-dependent reducing power and lipid peroxidation inhibition effect. In conclusion, quaternization and subsequent PEGylation of CS with rational modification degree of its free amino group will be a potential strategy for the development of biocompatible and biodegradable CS derivatives.  相似文献   

3.
Recombinant coagulation factor VIII (r-VIII SQ) was chemically modified with monomethoxy poly(ethylene glycol) (mPEG). Three mPEG derivatives were used for coupling to the r-VIII SQ lysines, a mixed anhydride of monomethoxy poly(ethylene glycol) succinic acid (mPEG-SAH), monomethoxy poly(ethylene glycol) succinimidyl succinate (mPEG-SS), and monomethoxy poly(ethylene glycol) tresylate (mPEG-TRES). A consequence of the modification with all derivatives was a substantial reduction in coagulant activity, even at very low degrees of modification. A method was developed with the purpose of avoiding conjugation at certain important biological sites on the factor VIII and thereby producing conjugates with better retained activity. This was achieved by immobilizing the protein onto a solid matrix during the modification reaction. Characterization of conjugates by SDS-PAGE, western blots, interaction with von Willebrand factor (vWf), and thrombin activation/inactivation analyses was undertaken. The SDS-PAGE and western blots revealed coupling heterogeneity regarding degree of modification. The amount of factor VIII able to bind to vWf decreased with the conjugation. Thrombin activated the modified factor VIII to essentially the same extent as the reference preparation of r-VIII SQ. Inactivation of the modified factor VIII was, however, slower than inactivation of the unmodified protein. Finally, an in vitro study was performed to evaluate the influence of the mPEG modification on the protein stability in extract of porcine tissue. Despite that conjugates with low degrees of modification were included in the study, the coagulant activity was preserved to a significantly higher extent in all incubation mixtures containing conjugates compared to that with unmodified protein.  相似文献   

4.
In order to improve its stability, immobilized Concanavalin A (Con A) on Toyopearl adsorbents was conjugated with monomethoxy poly(ethylene glycol) succinimidyl propionate (mPEG-SPA) with different molecular weight. A colorimetric method using ninhydrin is proposed to determine the degree of PEGylation; this method has proved to be easy applicable and reproducible. The PEGylation reaction was studied in detail to elucidate how parameters such as molar ratio of mPEG-SPA to Con A and molecular weight of mPEG-SPA affect the degree of PEGylation. The adsorption isotherms of glucose oxidase (GOD) onto native and PEGylated Con A adsorbents showed that the modification did not alter substantially the specificity of the carbohydrate binding ability of Con A. However, the binding capacity for GOD was slightly reduced probably due to the steric hindrance caused by mPEG chains. Adsorption kinetic studies revealed a lower adsorption rate after PEGylation which was attributed to the steric effect. The dynamic adsorption capacity for modified Con A depended very much on the degree of PEGylation and the molecular weight of mPEG derivatives. The adsorption capacity could be highly preserved for Toyopearl Con A modified by mPEG2k (90% of the original adsorption capacity) even with a degree of PEGylation up to 20% (the ratio of primary amino groups of PEGylated immobilized Con A to that of native immobilized Con A). Studies show that the binding capacity of PEGylated Con A was highly preserved under mild process conditions. PEGylated Con A also exhibited obviously higher stability against more stressful conditions such as the exposure to organic solvents and high temperatures. Conjugation of Con A with mPEG2k provided better adsorption performance thus has greater potential for application in affinity separation processes compared with mPEG5k. The fact that PEGylation stabilizes the properties of Con A may greatly expand the range of applications of unstable proteins to bioprocessing (e.g. biocatalysis and downstream separation) as well as other protein applications (e.g. medication, industrial use, etc.).  相似文献   

5.
Synthesis and characterization of poly(ethylene glycol)-insulin conjugates   总被引:8,自引:0,他引:8  
Human insulin was modified by covalent attachment of short-chain (750 and 2000 Da) methoxypoly (ethylene glycol) (mPEG) to the amino groups of either residue PheB1 or LysB29, resulting in four distinct conjugates: mPEG(750)-PheB1-insulin, mPEG(2000)-PheB1-insulin, mPEG(750)-LysB29-insulin, and mPEG(2000)-LysB29-insulin. Characterization of the conjugates by MALDI-TOF mass spectrometry and N-terminal protein sequence analyses verified that only a single polymer chain (750 or 2000 Da) was attached to the selected residue of interest (PheB1 or LysB29). Equilibrium sedimentation experiments were performed using analytical ultracentrifugation to quantitatively determine the association state(s) of insulin derivatives. In the concentration range studied, all four of the conjugates and Zn-free insulin exist as stable dimers while Zn(2+)-insulin was exclusively hexameric and Lispro was monomeric. In addition, insulin (conjugate) self-association was evaluated by circular dichroism in the near-ultraviolet wavelength range (320-250 nm). This independent method qualitatively suggests that mPEG-insulin conjugates behave similarly to Zn-free insulin in the concentration range studied and complements results from ultracentrifugation studies. The physical stability/resistance to fibrillation of mPEG-insulin conjugates in aqueous solution were assessed. The data proves that mPEG(750 and 2000)-PheB1-insulin conjugates are substantially more stable than controls but the mPEG(750 and 2000)-LysB29-insulin conjugates were only slightly more stable than commercially available preparations. Circular dichroism studies done in the far ultraviolet region confirm insulin's tertiary structure in aqueous solution is essentially conserved after mPEG conjugation. In vivo pharmacodynamic assays reveal that there is no loss in biological activity after conjugation of mPEG(750) to either position on the insulin B-chain. However, attachment of mPEG(2000) decreased the bioactivity of the conjugates to about 85% of Lilly's HumulinR formulation. The characterization presented in this paper provides strong testimony to the fact that attachment of mPEG to specific amino acid residues of insulin's B-chain improves the conjugates' physical stability without appreciable perturbations to its tertiary structure, self-association behavior, or in vivo biological activity.  相似文献   

6.
Successful and cost-effective PEGylation protocols require pure functionalized PEG reagents, which can be synthesized by simple and efficient procedures, exhibit high stability against hydrolysis, and maintain a level of reactivity with protein functional groups under mild reaction conditions. PEG-phenyl-isothiocyanate (PIT-PEG) is a new functionalized PEG having these characteristics, and has been synthesized by condensation of the bifunctional reagent 4-isothiocyanato phenyl isocyanate with monomethoxy PEG (mPEG). The data of (1)H NMR and colormetric analysis of the new PEG reagent establish that the mPEG has been quantitatively functionalized. The t 1/4 values for the hydrolysis of PIT-PEG5K in 100 mM phosphate solution at pH 6.5 and 9.2 are about 95 and 40 h, respectively. Incubation of human serum albumin (HSA, 0.5 mM) with a 10-fold molar excess of PIT-PEG (3K or 5K) at pH 6.5 and 9.2 generated PEG-HSA conjugates with average of 3.5 and 6.0 PEG chains per HSA molecule, respectively. The circular dichroism spectra of the conjugates showed that PEGylation of HSA has little influence on the secondary structure of HSA. The hexaPEGylated HSA, (TCP-PEG5K) 6-HSA, exhibited very high hydrodynamic volume, and the molecular radius of HSA increased from 3.95 to 6.57 nm on hexaPEGylation. The hexaPEGylation also increased the viscosity of 4% HSA from 1.05 to 2.10 cP, and the colloid osmotic pressure from 15.2 to 48.0 mmHg. The large increase in the hydrodynamic volume and the solution properties of (TCP-PEG5K) 6-HSA suggest that it could be a potential candidate as a plasma volume expander. PIT-PEG is a useful addition to the spectrum of functionalized PEG reagents available for surface decoration of proteins with PEG.  相似文献   

7.
The finding that several derivatives of 9-aminoacridine were deacridinylated in the presence of primary aliphatic amines during the solid phase synthesis of acridine-peptide conjugates prompted us to investigate the acridin-9-yl moiety transfer from a relatively low-molecular acridine source to a high-molecular carrier. The hydrophobic polymer was used as a model of hydrophobic core of biologically active proteins. While the alpha-amino group in the peptide was found to play the role of weak acridine acceptor, the epsilon-amino group of lysine appeared to serve as a moderate acceptor of acridine moiety. The covalent modification of the lysine residues side chain in the hydrophobic core of prion protein aggregates could thus explain the discrepancy between the ability of the acridine drug quinacrine to reduce efficiently the incidence of prion protein in cell culture and its weak prion binding affinity.  相似文献   

8.
An intramolecular modification of insulin at the alpha-amino group of glycine (A1) and the epsilon-amino group of lysine (B29) was carried out. The modification resulted in a slight alteration of the insulin secondary structure; the modified hormone possessed a biological activity which was practically identical to that of the natural hormone. Therefore the modified insulin can be used as a high molecular weight physiologically active radical inducer for the synthesis of (A1-B29) polyvinylimidazole derivatives. The molecular weight of the covalently linked polymer can be variable. It was shown that the increase in the amount of modifying polymer in the conjugate results in stabilization of the insulin secondary structure concomitant with a decrease of the biological activity and, moreover, of the immunoresponsiveness of the hormone.  相似文献   

9.
Gelonin purified from the seeds of Gelonium multiflorum using cation-exchange and gel-filtration chromatography was characterized for its purity, homogeneity and Mr by reverse-phase h.p.l.c. and SDS/polyacrylamide-gel electrophoresis analysis and judged to be 98% pure. As the cross-linking agent N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) has been used for linking gelonin via its epsilon-NH2 group to its carrier antibodies or hormones for immunotoxin or hormonotoxin respectively, an attempt was made to study the effect of this modification of gelonin on its immunoreactivity. A radioimmunoassay was developed for this purpose. By sequential modification, four categories of amino group modifications on immunoreactivity were observed. Even one or two modifications, representing one-twentieth to one-tenth of available epsilon-NH2 groups in the protein caused about 75% loss in immunoreactivity, with additional reactions contributing to further deteriorations. By using a gelonin radioimmunoassay, the immunoreactivity of gelonin in three hormonotoxins was determined with gelonin and modified gelonin as standards. The gelonin equivalent in our hormonotoxins was in agreement with the values determined by spectrophotometric and gel-electrophoresis methods. As the immunoreactivity of gelonin-SPDP was not further altered after conjugation to its carrier protein ovine lutropin, a specific radioimmunoassay of gelonin could be used to evaluate the molar ratio of the conjugates prepared by using SPDP as cross-linker and gelonin-SPDP as a standard.  相似文献   

10.
Using lysozyme as a representative protein substrate that loses its activity when PEGylation takes place on the epsilon-amino group of lysine residues, various amounts of a novel releasable PEG linker (rPEG) were conjugated to the protein. rPEG-lysozyme conjugates were relatively stable in pH 7.4 buffer for over 24 h. However, regeneration of native protein from the rPEG conjugates occurred in a predictable manner during incubation in high pH buffer or rat plasma, as demonstrated by enzymatic activity and structural characterization. The rates of regeneration were also correlated with PEG number: native lysozyme was released more rapidly from the monosubstituted conjugate than from the disubstituted conjugate, suggesting possible steric hindrance to the approach of cleaving enzymes. Recovery of normal activity and structure for the regenerated native lysozyme was shown by a variety of assays.  相似文献   

11.
The experimental conditions for the preparation of conjugates of ovalbumin (OA) and monomethoxypolyethylene glycol (mPEG) of a preselected average degree of conjugation, n, using cyanuric chloride as the coupling agent, have been investigated with emphasis on purification and characterization of the products. These conjugates served as prototypes of tolerogenic mPEG derivatives of antigenic proteins which were capable of suppressing in mammals the immunological response to the corresponding unmodified antigens. In other studies in this laboratory, the tolerogenicity of OA(mPEG)n conjugates was found to be a function of n. The reproducibility of the reaction leading to the production of OA(mPEG)n conjugates was shown to depend primarily on the reactivity of the mPEG-cyanuric chloride intermediate, which--for best results--had to be synthesized under completely anhydrous conditions. Isolation of the OA(mPEG)n conjugates was optimized by the use of ion-exchange chromatography whereby rapid removal of large amounts of uncoupled intermediate from the conjugate was achieved; the conditions of fractionation were affected by the degree of conjugation. This method of purification was superior to dialysis, ultrafiltration, and gel filtration. Furthermore, by the application of analytical hydrophobic interaction HPLC it was possible to differentiate among conjugates of different degrees of conjugation and to establish the absence of any detectable free OA in any of the preparations. The quantity of mPEG in the conjugates was determined directly by NMR.  相似文献   

12.
Under conditions of low ionic strength, ribonuclease A, which binds more tightly to single- than to double-stranded DNA, lowers the melting temperature of DNA helices (Jensen and von Hippel (1976) J. Biol. Chem. 251, 7198-7214). The effects of chemical modification of lysine and arginine residues on the helix-destabilizing properties of this protein have been examined. Removal of the positive charge on the lysine epsilon-amino group, either by maleylation or acetylation, destroys the ability of RNAase A to lower the Tm of poly[d(A-T)]. However, reductive alkylation of these residues, which has not effect on charge, yields derivatives which lower the Tm by only about one-half that seen with unmodified controls. Phenylglyoxalation of arginines can largely remove the Tm-depressing activity of RNAase A. RNAase S, which is produced by cleavage of RNAase A between amino acids 20 and 21, possesses DNA helix-destabilizing activity comparable to that of the parent protein, whereas S-protein (residues 21-124) increases poly[d(A-T)] Tm and S-peptide (1-20) has no effect on Tm. These results suggest that specific location of several basic amino acids situated on the surface of RNAase A is largely responsible for this protein's DNA melting activity.  相似文献   

13.
We synthesized two carminic acid (7-alpha-d-glucopyranosyl-9,10-dihydro-3,5,6,8-tetrahydroxy-1-methyl-9,10-dioxo-2-anthracene carboxlic acid, CA)-GnRH conjugates to be used as a model for potential photoactive targeted compounds. CA was conjugated to the epsilon-amino group of [d-Lys(6)]GnRH through its carboxylic moiety or via a beta-alanine spacer (beta-ala). Redox potentials of CA and its conjugates were determined. We used electron spin resonance (ESR) and spin trapping techniques to study the light-stimulated redox properties of CA and its CA-GnRH conjugates. Upon irradiation, the compounds stimulated the formation of reactive oxygen species (ROS), that is, singlet oxygen ((1)O(2)) and oxygen radicals (O(2)(-*) and OH(*)). Both conjugates exhibited higher ROS production than the non-conjugated CA. The bioactivity properties of the CA conjugates and the parent peptide, [d-Lys(6)]GnRH, were tested on primary rat pituitary cells. We found that the conjugates preserved the bioactivity of GnRH as illustrated by their capability to induce ERK phosphorylation and LH release.  相似文献   

14.
Dextranases catalyze the hydrolysis of the α-l,6-glucosidic bond of the polysaccharide dextran. Dextranases have been isolated from bacteria, yeast and fungi. Purified dextranase enzyme from Penicillium sp. was PEGylated (polyethylene glycol modification) with mPEG (5000 Da) and showed an increase in the dextranase protein molecular weight as estimated by Superose 12 (23 ml) column and this increment in the molecular weight is directly proportional to mPEG (5000 Da) concentration until a complete dextranase enzyme PEGylation (disappearance of dextranase peak). The residual activity of partially PEGylated dextranase (mPEG 5000 of 5.8 mg/ml) was 33.8% and for the completely PEGylated dextranase (mPEG 5000 of 29 mg/ml) it was 25.75%. Dextranase PEGylated with mPEG (30,000 Da) showed a little PEGylation at mPEG concentration of 5.8 mg/ml but at a concentration of 29 mg/ml several PEGylated peaks were produced with a difference in dextranase activity toward dextran T500, retardation in the activity with the increasing in the molecular weight was clearly appeared with Sephadex G75 but for Sephadex G200 a little retardation than Sephadex G75 has been appeared.  相似文献   

15.
Conjugation of truncated recombinant staphylokinase (trSak) with polyethylene glycol (PEG) is an effective way to overcome its short plasma half-life and enhance its therapeutic potential. However, conventional amine directed PEGylation chemistry inevitably led to modification at its functionally important N terminus, which resulted in a significantly reduced bioactivity of trSak. In this study, a novel solid phase PEGylation process was developed to shield the N-terminal region of the protein from PEGylation. The process was achieved by oriented adsorption of an N-terminally His-tagged trSak (His-trSak) onto an immobilized metal-ion affinity chromatography (IMAC). His-trSak was efficiently separated and retained on IMAC media before reaction with succinimidyl carbonate mPEG (SC-mPEG, 5, 10 or 20 kDa). The IMAC derived mono-PEGylated His-trSak showed structural and stability properties similar to the liquid phase derived conjugate. However, isoelectric focusing electrophoresis analysis revealed that mono-PEGylated His-trSaks via solid phase PEGylation were more homogeneous than those from liquid phase PEGylation. Moreover, tryptic peptide mapping analysis suggested that a complete N-terminal blockage of IMAC bound His-trSak from PEGylation with 10 kDa- and 20 kDa-SC-mPEG. In contrast, only partial protection of the N-terminal region was obtained for 5 kDa-SC-mPEG. Bioactivities of 10 kDa- and 20 kDa-PEG-His-trSak conjugates without N-terminal PEGylation were significantly higher than those of randomly PEGylated products. This further demonstrated the advantage of our new on-column PEGylation strategy.  相似文献   

16.
In order to synthesize a bioeffective hormonotoxin for selective targeting to specific cells in the gonads, gelonin, a single chain ribosome-inactivating protein obtained from an Indian plant called Gelonium multiflorum was covalently linked to ovine luteinizing hormone (oLH) by a disulfide bond. Ovine LH-S-S-gelonin conjugates of different molar ratios were subjected to determine the ribosome-inactivating property in a cell-free translation assay using rabbit reticulocyte lysate system. A single amino group modification with N-succinimidyl-3-(2-pyridyldithio)propionate resulted in a loss of 90% protein synthesis inhibition activity. Upon conjugation of gelonin to oLH, the activity was further inhibited ranging from 2.5-6.4%. A 1:1 to 1:1.5 molar ratio (oLH-S-S-gelonin) conjugates showed 2.5-4.6% activity while 1:2.8 to 1:2.2 molar ratio exhibited 5.5-6.4% inhibition ability.  相似文献   

17.
Gelonin was purified from the dry seeds of Gelonium multiflorum by ammonium sulfate fractionation followed by cation-exchange and gel-filtration chromatography in order to minimize extraction of non-proteineous material. Gelonin was characterized for its purity, homogeneity and molecular weight determination by RP-HPLC and SDS-PAGE analysis respectively. The amino groups of pure gelonin were thiolated by a hererobifunctional cross-linking agent, SPDP which is used in the design of cytotoxic hybrid molecules. Therefore, an attempt has been made to study the effect of thiolation on the ribosome inactivating property of gelonin. Thiolation of one amino group resulted in the loss of about 90% protein synthesis inhibition activity. Further modification of 2-3 amino groups further hampered the bioactivity (greater than 95-99.5%) of gelonin, suggesting that a 1:1 molar ratio of carrier-toxin conjugate would be highly active against the target cells.  相似文献   

18.
The synthesis and chemotactic properties of a new class of branched oligopeptide-based conjugates are described. Tetratuftsin derivatives containing chemotactic formyl tripeptides (For-MLF, For-NleLF or For-MMM) in branches were prepared by stepwise solid-phase peptide synthesis. The influence of the composition and ionic charge of the carrier-branched oligopeptide on the chemotactic behaviour of the conjugate was studied in Tetrahymena pyriformis. Conjugates with methotrexate (Mtx) as a drug component was also prepared. For this, a GFLGC spacer, cleavable by cathepsin B, was used. The spacer with N-terminal methotrexate was coupled to the chloroacetylated chemotactic carrier molecule by thioether bond formation. The chemotactic activity and cytotoxity of Mtx conjugates were also studied.  相似文献   

19.
甲氧基聚乙二醇(mPEG)修饰遮蔽人ABO血型抗原   总被引:3,自引:0,他引:3  
输血是一种非常有效的临床治疗手段 ,但血型不符会造成输血死亡事故 .为了解决输血中存在的血型匹配困难等问题 ,使用甲氧基聚乙二醇 (mPEG)化学修饰法 ,对红细胞表面的血型抗原进行化学修饰 ,从而达到遮蔽红细胞血型抗原的目的 .通过对mPEG BTC、mPEG ALD和mPEG 2 NHS三种mPEG衍生物对红细胞A抗原和B抗原修饰效果的比较 ,结果表明mPEG BTC修饰效果最好 ,可以完全遮蔽红细胞的A抗原和B抗原 ,使修饰后的A型、B型和AB型红细胞呈现出与O型红细胞相同的血型血清学特征 ;进一步研究证明 ,mPEG BTC与红细胞结合牢固 ,对红细胞结构、功能、变形能力、常规指标和沉降率等基本没有影响 .初步实现了A→O ,B→O和AB→O的血型改造 ,从而为临床输血治疗遇到的偏型、稀有血型、配型困难等问题的解决 ,提供了新的技术方法与思路 .  相似文献   

20.
Modification of proteins with polymers is a viable method to tune protein properties, e.g., to render them more water-soluble by using hydrophilic polymers. We have utilized precision-length, polyethylene glycol-based oligomers carrying a thioester moiety in transthioesterification and native chemical ligation reactions with internal and N-terminal cysteine residues in proteins and peptides. These reactions lead to uniquely modified proteins with an increased solubility in chaotrope- and detergent-free aqueous systems. Polymer modification of internal cysteines is fully reversible and allows generation of stable protein-polymer conjugates for enzymatic manipulations as demonstrated by proteolytic cleavage of a protein construct that was only soluble in buffers incompatible with protease activity before polymer modification. The permanent polymer modification of a Rab protein at its N-terminal cysteine produced a fully active Rab variant that was efficiently prenylated. Thus, PEGylation of prenylated proteins might be a viable route to increase water solubility of such proteins in order to carry out experiments in detergent- and lipid-free systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号