首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
Large amounts of cysteine proteinase inhibitors were found in bovine colostrum. One had a molecular weight of 90,000, and the other a molecular weight of 10,500. The concentrations of both these inhibitors were highest the day after parturition, and were about one-tenth as much on day 7. The lower molecular weight inhibitor was purified by acid treatment, ammonium sulfate fractionation, gel filtration on Sephadex G-50, CM-Sephadex chromatography and rechromatography on Sephadex G-50. The purified preparation gave a single band on SDS-polyacrylamide gel electrophoresis. This inhibitor contained one tryptophanyl residue and one cystinyl residue, and did not contain a free thiol group. Values obtained for its isoelectric point (pI) were 10.0 and 10.3. This material strongly inhibited cathepsin B, cathepsin H, and papain. the higher molecular weight inhibitor was partially purified. It had a pI of 4.2 and inhibited papain, cathepsin H, and cathepsin B.  相似文献   

2.
Horse seminal plasma does not possess a proteinase inhibitor corresponding to human HUSI-I (human seminal plasma inhibitor). Instead a protein complex of high relative molecular mass (Mr) containing proteinase inhibitory activity was detected, which was called horse seminal plasma protein complex or HSPC. The compound had a broad enzyme-inhibiting spectrum. Its Mr was estimated to be 800 000 and it was composed of 7 different polypeptides with Mr values ranging from 11 000 to 30 000. Its carbohydrate content was between 3.5% and 5%. Despite the high molecular mass, the complex was soluble in diluted perchloric acid and did not lose its biological activity. The high recovery of seminal plasma protein (69%) after perchloric acid treatment, the unaltered immunoelectrophoretic precipitation pattern of the perchloric acid soluble part of seminal plasma, and the similarity of the polypeptide patterns of unfractionated seminal plasma and HSPC suggest that HSPC is one of the major components of horse seminal plasma. In addition to HSPC, horse seminal plasma contained a group of three electrophoretically distinguishable proteinase inhibitors, corresponding roughly to a Mr of 6500. They inhibited only trypsin. The similar Mr values and the identical narrow enzyme specificity suggest that they are isoinhibitors and may be analogues of human HUSI-II (human seminal plasma inhibitor). The lack of a HUSI-I analog in the horse is discussed in relation to a previously made observation that horse tracheobronchial fluid contains no detectable perchloric acid-soluble proteinase inhibitors.  相似文献   

3.
Gelatinolytic proteinase activities in human seminal plasma   总被引:4,自引:0,他引:4  
Proteinase activities in human seminal plasma were detected using gelatin-containing sodium dodecyl sulphate-polyacrylamide gel electrophoresis zymography. Three prominent bands of activity of Mr 60,000, 66,000 and 90,000 were observed as well as 9 other bands of less intensity (34,000-158,000). These proteinases were dependent upon calcium for optimal activity, did not hydrolyse casein, and were predominantly in the soluble portion of seminal plasma. Examination of seminal plasma of men with different sperm concentrations, split ejaculates, and prostatic secretions indicated that the prostate gland was a source of most of these activities. Proteinase activities of Mr 34,000, 37,000, 82,000 and 120,000 were expressed more frequently in seminal plasma from normozoospermic men than from seminal plasma of oligo- or azoospermic men, indicating that they may also arise from spermatozoa in the semen sample. The proteinases of Mr 60,000 and 66,000 were found in all seminal plasmas whereas there was variation in the expression of the other molecular forms of enzyme, even in the normozoospermic samples. There are multiple forms of gelatinolytic proteinase activities in human seminal plasma which appear to arise from multiple sources in the reproductive tract including the Cowper's/urethral glands, the prostate gland, seminal vesicle and/or spermatozoa. Their function(s) in semen remains to be established.  相似文献   

4.
The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.  相似文献   

5.
Cystatin-like cysteine proteinase inhibitors from human liver.   总被引:8,自引:3,他引:5       下载免费PDF全文
Cysteine proteinase inhibitor (CPI) forms from human liver were purified from the tissue homogenate by alkaline denaturation of cysteine proteinases with which they are complexed, acetone fractionation, affinity chromatography on S-carboxymethyl-papain-Sepharose and chromatofocusing. The multiple forms of CPI were shown immunologically to be forms of two proteins, referred to as CPI-A (comprising the forms of relatively acidic pI) and CPI-B (comprising the more basic forms). CPI-A and CPI-B are similar in their Mr of about 12400, considerable stability to pH2, pH11 and 80 degrees C, and tight-binding inhibition of papain, several related cysteine proteinases and dipeptidyl peptidase I. Ki values were determined for papain, human cathepsins B, H and L, and dipeptidyl peptidase I. The affinity of CPI-A for cathepsin B was about 10-fold greater than that of CPI-B, whereas CBI-B showed about 100-fold stronger inhibition of dipeptidyl peptidase I. For all the cysteine proteinases the liver inhibitors were somewhat less tight binding than cystatin. The resemblance of both CPI-A and CPI-B in several respects to egg-white cystatin is discussed. CPI-A seems to correspond to the epithelial inhibitor described previously, and CPI-B to the inhibitor from other cell types [Järvinen & Rinne (1982) Biochim. Biophys. Acta 708, 210-217].  相似文献   

6.
A cysteine proteinase inhibitor with acidic isoelectric point (pI = 4.7-5.0) was found in human seminal plasma. Its apparent molecular mass is 16 kDa. It inhibits cysteine proteinases like ficin, cathepsin H, cathepsin B and papain. The inhibitory activity of seminal plasma against ficin is almost the same as that of human serum.  相似文献   

7.
The major parvalbumins present in the iliofibularis muscle of Xenopus laevis were identified and the total parvalbumin content of different types of single fibers of this muscle was determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate (SDS). The criteria used in the identification of proteins as parvalbumins were: a relative molecular mass (Mr) between 10,000 and 14,000, an isoelectric point (pI) between 4.0 and 5.0, and a Ca2+-dependent mobility when run on a polyacrylamide gel in the absence of SDS. Four proteins were thus identified as parvalbumins: PA1, Mr 14,000, pI 4.90; PA2, Mr 11,000, pI 4.90; PA3, Mr 11,000, pI 4.95; and PA4, Mr 11,000, pI 4.25. An ultraviolet absorbance spectrum characteristic of parvalbumins was recorded for a purified preparation of these four proteins. Because the apparent Mr of rabbit parvalbumin in the gel system used was 14,000, whereas the true value is 12,100, it is not excluded that the Mr of component PA1 of 14,000 is an overestimation. The total parvalbumin content of muscles and single muscle fibers was determined using the supernatant obtained after centrifugation of tissue homogenates. Analysis of the protein pattern after electrophoresis in the presence of SDS of this fraction indicated that the Mr 14,000 and 11,000 protein bands contained virtually only parvalbumin. Quantification of the total parvalbumin content of relatively fast (type 1) and slow (type 2) contracting and relaxing single muscle fibers, using laser densitometric analysis of minigels, yielded mean values (mg protein/g wet wt., +/- S.D.) of 5.2 +/- 0.8 for nine type 1 fibers, and 1.9 +/- 1.0 for five type 2 fibers. Both fiber types contained about 2.5-times as much of the Mr 14,000 isoform relative to the combined Mr 11,000 isoforms.  相似文献   

8.
Six cysteine proteinase inhibitors were isolated from human urine by affinity chromatography on insolubilized carboxymethylpapain followed by ion-exchange chromatography and immunosorption. Physicochemical and immunochemical measurements identified one as cystatin A, one as cystatin B, one as cystatin C, one as cystatin S, and one as low molecular weight kininogen. The sixth inhibitor displayed immunochemical cross-reactivity with salivary cystatin S but had a different pI (6.85 versus 4.68) and a different (blocked) N-terminal amino acid. This inhibitor was tentatively designated cystatin SU. The isolated inhibitors accounted for nearly all of the cysteine proteinase inhibitory activity of the urinary pool used as starting material. The enzyme inhibitory properties of the inhibitors were investigated by measuring inhibition and rate constants for their interactions with papain and human cathepsin B. Antisera raised against the inhibitors were used in immunochemical determinations of their concentrations in several biological fluids. The combined enzyme kinetic and concentration data showed that several of the inhibitors have the capacity to play physiologically important roles as cysteine proteinase inhibitors in many biological fluids. Cystatin C had the highest molar concentration of the inhibitors in seminal plasma, cerebrospinal fluid, and milk; cystatin S in saliva and tears; and kininogen in blood plasma, synovial fluid, and amniotic fluid.  相似文献   

9.
Human tissues are known to contain two low molecular weight (MW about 12,000) cysteine proteinase inhibitors, i.e. an acid inhibitor (ACPI) with pI 4.7-5.0 and a neutral inhibitor (NCPI) with pI 6.0-6.5. ACPI is abundant in cornifying epithelial tissues and in the dendritic reticulum cells of germinal centres of the lymph nodes. NCPI is abundant in lymphatic tissue and is known to be synthesized and released by mononuclear phagocytes. In this report NCPI was localized immunohistochemically in the epitheloid cells of most sarcoidotic lymph nodes, in lymph node macrophages after lymphangiography and in alveolar macrophages, while no ACPI could be demonstrated in the same cells by similar methods. These inhibitors were not demonstrable in lymph node sinus histiocytosis. Peripheral blood monocytes did not exhibit any NCPI immunoreactivity. In occasional blood monocytes anti-ACPI serum gave a weak reaction, the specificity of which is questionable. These data suggest that studies on cysteine proteinase inhibitors reveal basic differences in the various histiomonocytic cells and possibly differences in their functional stages.  相似文献   

10.
Two molecular weight (Mr) forms of angiotensin-converting enzyme are present in human testis. Both the high Mr 140,000 form and the low Mr 90,000 form are catalytically similar but immunologically distinct. After isoelectric focusing, the profile of sialylated Mr 140,000 isozymes resembled that of seminal plasma converting enzyme, whereas the nonsialylated Mr 90,000 isozymes were distinct. These data suggest that the Mr 140,000 testicular converting enzyme may be a source of converting enzyme in seminal plasma.  相似文献   

11.
Low molecular weight, acid-stable proteinase inhibitors from epididymal and seminal vesicle homogenates were isolated and characterized. The isolation procedure consisted of gel filtration, trypsin affinity, and ion exchange chromatography. The inhibitor from seminal vesicle homogenates has a molecular weight of approximately 6,200, and that of the epididymal inhibitor was estimated at 4,000. Antiserum directed against the seminal vesicle inhibitor did not react with epididymal components. The epididymal inhibitor shows competitive, whereas the seminal vesicle inhibitor shows noncompetitive inhibition against trypsin on double reciprocal plots. Both inhibitors are effective against trypsin and acrosin but not against chymotrypsin, kallikrein, thrombin, or plasmin. To verify site of origin and to investigate androgen dependency of the epididymal inhibitor, mice were efferentiectomized, orchiectomized, or orchiectomized with androgen supplementation. Gel filtration profiles of acid-treated epididymal homogenates from normal and efferentiectomized animals show inhibitor peaks in the same regions. The concentration of acid-stable inhibitor from epididymal homogenates decreased with orchiectomy but returned to normal values when exogenous androgen was supplied. These observations suggest that the low molecular weight inhibitor in the epididymal homogenates is distinct from that in the seminal vesicles. Furthermore, the inhibitor associated with epididymal homogenates is androgen-dependent, and the epididymis is the site of origin of this inhibitor.  相似文献   

12.
Thiol proteinase inhibitors in rat serum were purified and their properties were compared with those of rat liver thiol proteinase inhibitor. The inhibitors in rat serum were separated into three forms (S-1, S-2, and S-3) by linear gradient elution from a DE52 column. One inhibitor (S1) was purified to homogeneity by chromatography on ficin-bound Sepharose and Sephadex G-150 columns. The apparent molecular weights of S1, S2, and S3 on Sephadex G-150 columns were 90,000, 95,000, and 160,000, respectively. Serum thiol proteinase inhibitor and liver thiol proteinase differed in the following: 1) all three forms of serum inhibitor had much higher molecular weights than the liver thiol proteinase inhibitor (Mr = 12,500); 2) no cross-reactivity was observed between serum inhibitors and liver inhibitor in tests with either antiserum inhibitor or anti-liver antiserum; 3) both serum inhibitor and liver inhibitor were specific for thiol proteinases, but had different inhibition spectra; 4) the liver inhibitor did not bind to concanavalin A-Sepharose, whereas the serum inhibitor bound and was eluted with alpha-methyl mannoside. A thiol proteinase inhibitor of high molecular weight detected in tissue homogenates inhibited papain markedly but did not inhibit cathepsin H. Its activity was diminished by perfusion of the organ, indicating that it is derived from serum.  相似文献   

13.
This study examined proteolytic enzymes and serine proteinase inhibitors in turkey seminal plasma with relation to their distribution within the reproductive tract and to yellow semen syndrome (YSS). Proteases of blood plasma, extracts from the reproductive tract, and seminal plasma were analyzed by gelatin zymography. We found a clear regional distribution of proteolytic enzymes in the turkey reproductive tract. Each part was characterized by a unique profile of serine proteolytic enzymes of molecular weights ranging from 29 to 88 kDa. The ductus deferens was found to be a site of very intense proteolytic activity. Two metalloproteases of 58 and 66 kDa were detected in all parts of the reproductive tract and seminal plasma. Using electrophoretic methods for detection of anti-trypsin activity, we found three serine proteinase inhibitors in turkey seminal plasma. Two inhibitors were found in the testis and epididymis and a third in the ductus deferens and seminal plasma. Blood plasma was characterized by the presence of two metalloproteinases and one serine proteinase inhibitor (of low migration rate) that were also detected in the reproductive tract. Amidase and anti-trypsin activities (expressed per gram of protein) differed for yellow and white seminal plasma. We concluded that turkey seminal plasma contains metalloproteases, serine proteinases, and serine proteinase inhibitors. The metalloproteases and one proteinase inhibitor are related to blood proteinases but the other two inhibitors and serine proteinases seem to be unique for the reproductive tract.  相似文献   

14.
A synthetic substrate (p-nitrophenyl-alpha-D-glucopyranoside) was used to measure the acid and neutral alpha-glucosidase activity in bull seminal plasma, spermatozoa and in homogenates of bull reproductive organs. Marked differences were observed in the activities of these enzymes in the various tissues studied. Epididymis and particularly its caput region contained the highest specific activity of acid alpha-glucosidase. The activity of neutral alpha-glucosidase was highest in testis and in different parts of the epididymis. Seminal plasma, spermatozoa and seminal vesicle secretion contained only the acid enzyme activity. After fractionation with anion exchange chromatography in HPLC (Mono Q) and chromatofocussing, acid alpha-glucosidase activity of seminal plasma was recovered in two fractions with different pI values. The corresponding activities were found in the secretion of seminal vesicles, which thus form the major secretory source of seminal plasma acid alpha-glucosidase. In the fractionation with gel filtration on Sepharose 6B, the acid alpha-glucosidase had a smaller molecular weight than did the neutral enzyme. In anion exchange chromatography and chromatofocussing the testicular and epididymal homogenates each contained two acid and two neutral isoenzymes. In both fractionations the elution pattern of acid alpha-glucosidase was clearly different from that of the enzymes in seminal plasma. The pH optimum of acid alpha-glucosidase ranged from 3.75 to 4.5 and that of the neutral enzyme from 6.5 to 7.0. The neutral activity was more sensitive to many divalent metal ions and differences were also observed in the response of the enzymes to different concentrations of turanose and KCl.  相似文献   

15.
Human plasma alpha-cysteine proteinase inhibitor (alpha CPI) was purified by a two-stage method: affinity chromatography on S-carboxymethyl-papain-Sepharose, and high-resolution anion-exchange chromatography. The protein was obtained as a form of Mr about 64 000 and material of higher Mr (about 100 000). In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with reduction, both forms showed a major component of Mr 64 000. An antiserum was raised against alpha CPI, and 'rocket' immunoassays showed the mean concentration in sera from 19 individuals to be 35.9 mg/dl. Both low-Mr and high-Mr forms of alpha CPI were confirmed to be sialoglycoproteins by the decrease in electrophoretic mobility after treatment with neuraminidase. alpha CPI was shown immunologically to be distinct from antithrombin III and alpha 1-antichymotrypsin, two serine proteinase inhibitors from plasma with somewhat similar Mr values. alpha CPI was also distinct from cystatins A and B, the two intracellular low-Mr cysteine proteinase inhibitors from human liver. Complexes of alpha CPI with papain were detectable in immunoelectrophoresis, but dissociated to free enzyme and intact inhibitor in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The stoichiometry of binding of papain was close to 1:1 for both low-Mr and high-Mr forms. alpha CPI was found to be a tight-binding inhibitor of papain and human cathepsins H and L (Ki 34 pM, 1.1 nM and 62 pM respectively). By contrast, inhibition of cathepsin B was much weaker, Ki being about 35 microM. Dipeptidyl peptidase I also was weakly inhibited. Digestion of alpha CPI with bromelain gave rise to an inhibitory fragment of Mr about 22 000, which was isolated.  相似文献   

16.
Murine sperm bind a proteinase inhibitor of seminal vesicle origin at ejaculation. The inhibitor binds in the acrosomal region of the sperm head and is removed during in utero or in vitro incubation. Adding inhibitor to sperm reduces their ability to bind zonae, while adding the purified inhibitor binding site to cumulus-free, zona-intact oocytes reduces the ability of the oocytes to bind sperm. Immuno-aggregation of the inhibitor binding site results in exocytosis of the acrosome. These observations suggest that the inhibitor binding site may participate in zona binding and the acrosome reaction. If the inhibitor binding site binds both the zona and the seminal inhibitor, then these components should compete with each other for that site on the sperm. We show that purified seminal inhibitor, as well as other proteinase inhibitors, block zona-induced acrosome reactions. Likewise, zona glycopeptides block inhibitor/anti-inhibitor-induced acrosome reactions in a concentration-dependent fashion. The inhibitor/anti-inhibitor-induced acrosome reaction is sensitive to pertussis toxin and proteinase inhibitor and thus is similar to zona-induced reactions. These findings support the suggestion that the trypsin inhibitor binding site on the head of the sperm functions to insure sperm-zona binding and induction of the acrosome reaction.  相似文献   

17.
Proteinase inhibitors were extracted from the upper leaves of tomato plants, Lycopersicon esculentum Mill., 48 hours after wounding single lower leaves. Inhibitors were partially purified by affinity chromatography and isoelectric focusing. Significantly higher levels of trypsin and chymotrypsin inhibitory activity were recovered from wounded plants than from unwounded controls. Several inhibitor peaks were partially resolved by isoelectric focusing of affinity column eluates from both wounded and control plants. Inhibitor activity associated with each peak was greater in wounded plants than in corresponding peaks of controls. Agar double diffusion immunological assays showed that inhibitors with basic isoelectric points (pI) of 9.5, 8.9, 8.3, 8.2, and 8.0 are serologically related to inhibitor I. Certain of these inhibitors (pI = 9.5, 8.2, and 8.0) reacted strongly with both inhibitors I and II antiserum. Three acidic proteinase inhibitors (pI = 6.5, 5.9, and 4.7), which accumulated due to wounding, also were isolated. These inhibitors are novel, since they were shown to be serologically unrelated to inhibitors I and II.  相似文献   

18.
We describe the purification and characterization of two novel cysteine proteinase inhibitors found in Atlantic salmon skin. One of these, salmon kininogen, has a molecular mass of 52 kDa as determined by matrix-assisted laser desorption/ionization time-of-flight MS, is multiply charged with pI values of 4.0, 4.2 and 4.6 and shows homology to kininogens including the bradykinin motif. The other, salarin, has a molecular weight of 43 kDa, a pI of 5.1 and shows weak homology to cysteine proteinases. Both proteins are N- and O-glycosylated and inhibit papain and ficin but not trypsin.  相似文献   

19.
20.
We have employed HPLC on reversed phase columns to analyse the major basic proteins from bull seminal vesicle secretion. The identification of proteins was achieved by comparison with authentic protein samples from bull seminal plasma as well as immunological characterisation using antisera directed against the latter proteins. The major basic proteins from bull seminal plasma: bull seminal proteinase inhibitor II (BUSI II), the seminal ribonuclease BS1, the protein P6 as well as the antimicrobial protein were also identified as the main constituents of the fraction of basic proteins derived from seminal vesicle secretion. FPLC using Mono S HR columns was also found to resolve the mixture of basic proteins and proved to be especially useful with respect to the isolation of the antimicrobial protein from basic proteins of seminal vesicle secretion. The identity of the antimicrobial protein from bull seminal plasma with the respective protein from seminal vesicle secretion was confirmed by amino-acid analysis and comparison of tryptic peptide patterns by HPLC. The antimicrobial protein was isolated from seminal vesicle secretion with a yield of 3 mg/ml of secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号