首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrated earlier that hemin-iron-containing compounds which include hemin, human hemoglobin, bovine hemoglobin, and bovine catalase stimulate the growth of Prevotella intermedia [Leung, Subramaniam, Okamoto, Fukushima, Lai, FEMS Microbiol. Lett. 162 (1998) 227-233]. However, the contributions of tetrapyrrole porphyrin ring in these hemin-iron sources as well as inorganic iron for the growth of this organism have not been determined. The purpose of this study was to examine the effects of porphyrins, host iron-binding proteins, and various inorganic iron sources on the growth of hemin-iron depleted P. intermedia. Protoporphyrin IX and protoporphyrin IX-zinc, either in the presence or absence of supplemented ferrous or ferric iron, promoted the growth of P. intermedia at a rate that was comparable to that of the hemin control. On the other hand, neither the host iron proteins, transferrin and lactoferrin, nor the inorganic iron sources which included ferrous chloride, ferric chloride, ferric citrate, ferric nitrate, and ferric ammonium citrate at concentrations up to 200 microM stimulated the growth of hemin-iron-restricted P. intermedia. The results suggest that P. intermedia only use iron in a specific form and that the porphyrin-ring structure is essential for the growth of P. intermedia as in the case of other related organisms.  相似文献   

2.
A 26-kDa outer membrane protein (Omp26) has been proposed to play a role in hemin acquisition by Porphyromonas gingivalis (T. E. Bramanti and S. C. Holt, J. Bacteriol. 174:5827-5839, 1992). We studied [55Fe]hemin uptake in P. gingivalis grown under conditions of hemin starvation (Omp26 expressed on the outer membrane surface) and hemin excess (Omp26 not expressed on surface). [55Fe]hemin uptake occurred rapidly in hemin-starved cells which incorporated up to 70% of total [55Fe]hemin within 3 min. P. gingivalis grown under hemin-starved conditions or treated with the iron chelator 2,2'-bipyridyl to induce an iron stress took up six times more [55Fe]hemin than hemin-excess-grown cells. Polyclonal monospecific anti-Omp26 antibody added to hemin-starved cells inhibited [55Fe]hemin uptake by more than 50%, whereas preimmune serum had no effect. [55Fe]hemin uptake in hemin-starved P. gingivalis was inhibited (36 to 67%) in the presence of equimolar amounts of unlabeled hemin, protoporphyrin IX, zinz protoporphyrin, and Congo red dye but was not inhibited in the presence of non-hemin-containing iron sources. Heat shock treatment (45 degrees C) of hemin-excess-grown P. gingivalis (which cases translocation of Omp26 to the surface) increased [55Fe]hemin uptake by threefold after 3 min in comparison with cells grown at 37 degrees C. However, no [55Fe] hemin uptake beyond 3 min was observed in either hemin-excess-grown or hemin-starved cells exposed to heat shock. In experiments using heterobifunctional cross-linker analysis, hemin and selected porphyrins were cross-linked to Omp26 in hemin-starved P. gingivalis, but no cross-linking was seen with hemin-excess-grown cells. However, cross-linking of hemin to Omp26 was observed after heat shock treatment of hemin-excess-grown cells. Finally, anti-Omp26 antibody inhibited cross-linked of hemin to Omp26. These findings indicate that hemin binding and transport into P.gingivalis cell mediated by Omp26.  相似文献   

3.
We recently identified a 26-kDa hemin-repressible outer membrane protein (Omp26) expressed by the periodontal pathogen Porphyromonas gingivalis. We report the localization of Omp26, which may function as a component of a hemin transport system in P. gingivalis. Under hemin-deprived conditions, P. gingivalis expressed Omp26, which was then lost from the surface after a shift back into hemin-rich conditions. Experiments with 125I labeling of surface proteins to examine the kinetics of mobilization of Omp26 determined that it was rapidly (within less than 1 min) lost from the cell surface after transfer into a hemin-excess environment. When cells grown under conditions of hemin excess were treated with the iron chelator 2,2'-bipyridyl, Omp26 was detected on the cell surface after 60 min. One- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analyses using purified anti-Omp26 monospecific polyclonal immunoglobulin G antisera established that Omp26 was heat modifiable (39 kDa unheated) and consisted of a single protein species. Immunogold labeling of negatively stained and chemically fixed thin-section specimens indicated that Omp26 was associated with the cell surface and outer leaflet of the P. gingivalis outer membrane in hemin-deprived conditions but was buried in the deeper recesses of the outer membrane in hemin-excess conditions. Analysis of subcellular fractions of P. gingivalis grown either in hemin-excess or hemin-deprived conditions detected Omp26 only in the cell envelope fraction, not in the cytoplasmic fraction or culture supernatant. Limited proteolytic digestion of hemin-deprived P. gingivalis with trypsin and proteinase K verified the surface location of Omp26 as well as its susceptibility to proteolytic digestion. Heat shock treatment of hemin-excess-grown P. gingivalis also resulted in Omp26 translocation onto the outer membrane surface even in the presence of hemin. Furthermore, hemin repletion of heat-shocked, hemin-deprived P. gingivalis did not result in Omp26 translocation off the outer membrane surface, suggesting that thermal stress inactivates this transmembrane event. This newly described outer membrane protein appears to be associated primarily with the outer membrane, in which it is exported to the outer membrane surface for hemin binding and may be imported across the outer membrane for intracellular hemin transport.  相似文献   

4.
The porphyrin requirements for growth recovery of Porphyromonas gingivalis in heme-depleted cultures are investigated. In addition to physiologically relevant sources of heme, growth recovery is stimulated by a number of noniron porphyrins. These data demonstrate that, as for Haemophilus influenzae, reliance on captured iron and on exogenous porphyrin is manifest as an absolute growth requirement for heme. A number of outer membrane proteins including some gingipains contain the hemoglobin receptor (HA2) domain. In cell surface extracts, polypeptides derived from HA2-containing proteins predominated in hemoglobin binding. The in vitro porphyrin-binding properties of a recombinant HA2 domain were investigated and found to be iron independent. Porphyrins that differ from protoporphyrin IX in only the vinyl aspect of the tetrapyrrole ring show comparable effects in competing with hemoglobin for HA2 and facilitate growth recovery. For some porphyrins which differ from protoporphyrin IX at both propionic acid side chains, the modification is detrimental in both these assays. Correlations of porphyrin competition and growth recovery imply that the HA2 domain acts as a high-affinity hemophore at the cell surface to capture porphyrin from hemoglobin. While some proteins involved with heme capture bind directly to the iron center, the HA2 domain of P. gingivalis recognizes heme by a mechanism that is solely porphyrin mediated.  相似文献   

5.
Abstract We examined the effect of the concentration of various types of iron molecules on the regulation of growth of Porphyromonas gingivalis . Bacterial growth was monitored spectrophotometrically. The hemin-depleted cells of P. gingivalis 381 were incubated in the basal medium plus test substrates such as hemoglobin, hemin, transferrin and various inorganic iron compounds. The relationship between the specific growth rate of organisms and the concentration of iron-containing compounds was determined. The value of K s, a parameter analogous to the Michaelis-Menten constant, was estimated. P . gingivalis 381 showed a K ss value of 3.85, 4.91 and 0.0017 μM for hemin, transferrin and hemoglobin, respectively. However, the inorganic iron compounds tested did not support growth of P. gingivalis . These findings suggest that P. gingivalis utilizes hemoglobin as an iron source much more effectively than other iron-containing compounds under an iron-limited environment.  相似文献   

6.
7.
Previous genetic and biochemical studies have confirmed that hemoglobin and hemin utilization in Porphyromonas gingivalis is mediated by the outer membrane hemoglobin and heme receptor HmuR, as well as gingipain K (Kgp), a lysine-specific cysteine protease, and gingipain R1 (HRgpA), one of two arginine-specific cysteine proteases. In this study we report on the binding specificity of the recombinant P. gingivalis HmuR protein and native gingipains for hemoglobin, hemin, various porphyrins, and metalloporphyrins as assessed by spectrophotometric assays, by affinity chromatography, and by enzyme-linked immunosorbent assay. Protoporphyrin, mesoporphyrin, deuteroporphyrin, hematoporphyrin, and some of their iron, copper, and zinc derivatives were examined to evaluate the role of both the central metal ion and the peripheral substituents on binding to recombinant HmuR and soluble gingipains. Scatchard analysis of hemin binding to Escherichia coli cells expressing recombinant membrane-associated six-His-tagged HmuR yielded a linear plot with a binding affinity of 2.4 x 10(-5) M. Recombinant E. coli cells bound the iron, copper, and zinc derivatives of protoporphyrin IX (PPIX) with similar affinities, and approximately four times more tightly than PPIX itself, which suggests that the active site of HmuR contains a histidine that binds the metal ion in the porphyrin ring. Furthermore, we found that recombinant HmuR prefers the ethyl and vinyl side chains of the PPIX molecule to either the larger hydroxyethyl or smaller hydrogen side chains. Kgp and HRgpA were demonstrated to bind various porphyrins and metalloporphyrins with affinities similar to those for hemin, indicating that the binding of Kgp and HRgpA to these porphyrins does not require a metal within the porphyrin ring. We did not detect the binding of RgpB, the arginine-specific cysteine protease that lacks a C-terminal hemagglutinin domain, to hemoglobin, porphyrins, or metalloporphyrins. Kgp and HRgpA, but not RgpB, were demonstrated to bind directly to soluble recombinant six-His-tagged HmuR. Several possible mechanisms for the cooperation between outer membrane receptor HmuR and proteases Kgp and HRgpA in hemin and hemoglobin binding and utilization are discussed.  相似文献   

8.
Deferoxamine (DFO), an FDA-approved iron chelator used for treatment of iron poisoning, affects bacteria as iron availability is intimately connected with growth and several virulence determinants. However, little is known about the effect on oral pathogens. In this study, the effect of DFO on Porphyromonas gingivalis, a major periodontopathogen which has an essential growth requirement for hemin (Fe(3+)-protoporphyrin IX), was evaluated. The viability of P. gingivalis W83 was not affected by 0.06-0.24 mM DFO, whereas the doubling time of the bacterium was considerably prolonged by DFO. The inhibitory effect was evident at earlier stages of growth and reduced by supplemental iron. UV-visible spectra using the pigments from P. gingivalis cells grown on blood agar showed that DFO inhibited μ-oxo bisheme formation by the bacterium. DFO decreased accumulation and energy-driven uptake of hemin by P. gingivalis. Antibacterial effect of H(2)O(2) and metronidazole against P. gingivalis increased in the presence of DFO. Collectively, DFO is effective for hemin deprivation in P. gingivalis suppressing the growth and increasing the susceptibility of the bacterium to other antimicrobial agents such as H(2)O(2) and metronidazole. Further experiments are necessary to show that DFO may be used as a therapeutic agent for periodontal disease.  相似文献   

9.
10.
Heme binding and uptake are considered fundamental to the growth and virulence of the gram-negative periodontal pathogen Porphyromonas gingivalis. We therefore examined the potential role of the dominant P. gingivalis cysteine proteinases (gingipains) in the acquisition of heme from the environment. A recombinant hemoglobin-binding domain that is conserved between two predominant gingipains (domain HA2) demonstrated tight binding to hemin (Kd = 16 nM), and binding was inhibited by iron-free protoporphyrin IX (Ki = 2.5 microM). Hemoglobin binding to the gingipains and the recombinant HA2 (rHA2) domain (Kd = 2.1 nM) was also inhibited by protoporphyrin IX (Ki = 10 microM), demonstrating an essential interaction between the HA2 domain and the heme moiety in hemoglobin binding. Binding of rHA2 with either hemin, protoporphyrin IX, or hematoporphyrin was abolished by establishing covalent linkage of the protoporphyrin propionic acid side chains to fixed amines, demonstrating specific and directed binding of rHA2 to these protoporphyrins. A monoclonal antibody which recognizes a peptide epitope within the HA2 domain was employed to demonstrate that HA2-associated hemoglobin-binding activity was expressed and released by P. gingivalis cells in a batch culture, in parallel with proteinase activity. Cysteine proteinases from P. gingivalis appear to be multidomain proteins with functions for hemagglutination, erythrocyte lysis, proteolysis, and heme binding, as demonstrated here. Detailed understanding of the biochemical pathways for heme acquisition in P. gingivalis may allow precise targeting of this critical metabolic aspect for periodontal disease prevention.  相似文献   

11.
The role of hemin in the maintenance of protein synthesis in reticulocyte lysates was examined by comparing the effects of various porphyrins and metalloporphyrins on the protein kinase activity of the hemin-controlled repressor and on protein synthesis. The porphyrin requirements for maintenance of protein synthesis were relatively specific. Iron and cobalt metalloporphyrins sustained protein synthesis whereas other metalloporphyrins, metal-deficient porphyrins, and non-porphyrin precursor and degradation products of protoporphyrin IX were ineffective. These same compounds were examined for their effectiveness in inhibiting the protein kinase activity of the hemin-controlled repressor with initiation factor 2 (eIF-2). Most of the metalloporphyrins and porphyrins tested were inhibitory. The presence of the iron atom in the porphyrin was not essential for inhibition, but the maintenance of the integrity of the porphyrin ring was imperative. The porphyrins which inhibited the hemin-regulated protein kinase contained vinyl groups or ethyl groups, or were protonated in the 2- and 4-positions of the porphyrin ring, whereas those with bulky or acidic groups in these positions were ineffective. Precursor and degradation products of protoporphyrin IX and synthetic porphyrins modified at other positions had no effect on the enzyme. Both hemin and protoporphyrin IX inhibited phosphorylation of eIF-2 exogenously added to a reticulocyte lysate; however, hemin sustained protein synthesis in the lysate, whereas protoporphyrin IX did not. These results suggest that regulation of the protein kinase phosphorylating the alpha subunit of eIF-2 is not the only point at which hemin modulates protein synthesis in reticulocytes and reticulocyte lysates, since a correlation between inhibition of protein synthesis, inhibition of protein kinase activity, and phosphorylation of eIF-2 is not observed with all porphyrins.  相似文献   

12.
Hemin has been implicated in the pathogenesis of the oral pathogen, Bacteroides gingivalis. In order to elucidate the role of hemin (iron) in the growth and expression of outer membrane proteins, B. gingivalis strain W50 was grown with and without hemin to induce iron-limitation. Cells grew slower under iron stress and growth was completely inhibited in the absence of added hemin. The outer membrane protein profiles of B. gingivalis grown under iron-replete and iron-restricted conditions were studied by extrinsic radiolabelling with [125I] and polyacrylamide gel-electrophoresis. The induction of 10 surface proteins, with apparent molecular weights of 26, 29, 50, 56, 58, 60, 62, 71, 77, and 80 Kd, was observed in B. gingivalis grown under iron-restricted conditions. These proteins were repressed under iron-replete conditions. We postulate the involvement of the iron-regulated proteins in hemin uptake and virulence in B. gingivalis.  相似文献   

13.
Haematoporphyrin derivative (HpD), a mixture of porphyrins, is currently used as a photochemotherapeutic agent in the treatment of neoplasias. The interaction of purified components of HpD with serum and cellular proteins was investigated using absorption and fluorescence spectroscopy. The interactions of haematoporphyrin and OO'-diacetylhaematoporphyrin with human albumin and with haemopexin, the two major serum porphyrin-binding proteins, show stoichiometries of 1 mol of porphyrin bound per mol of protein. The apparent dissociation constants, Kd, are in the range of 1-2 microM for albumin and 3-4 microM for haemopexin. These two major components of HpD would, after intravenous injection, bind to albumin and circulate in serum as albumin complexes. Free porphyrin rather than porphyrin bound to albumin interacts with Morris hepatoma tissue culture cells. A rapid high-affinity saturable transport system operates at free porphyrin concentrations of less than 2 microM. In addition, fluorescence spectra show that components in rat liver cytosol can bind haematoporphyrin and OO'-diacetylhaematoporphyrin and distinguish these binders from those present in rat serum.  相似文献   

14.
A radioligand assay was designed to detect and compare specific hemin binding by the periodontal anaerobic black-pigmenting bacteria (BPB) Porphyromonas gingivalis and Prevotella intermedia. The assay included physiological concentrations of the hemin-binding protein rabbit serum albumin (RSA) to prevent self-aggregation and nonspecific interaction of hemin with cellular components. Under these conditions, heme-starved P. intermedia cells (two strains) expressed a single binding site species (4,100 to 4,600 sites/cell) with a dissociation constant (Kd) of 1.0 x 10(-9) M. Heme-starved P. gingivalis cells (two strains) expressed two binding site species; the higher-affinity site (1,000 to 1,500 sites/cell) displayed a Kd of between 3.6 x 10(-11) and 9.6 x 10(-11) M, whereas the estimated Kd of the lower-affinity site (1.9 x 10(5) to 6.3 x 10(5) sites/cell) ranged between 2.6 x 10(-7) and 6.5 x 10(-8) M. Specific binding was greatly diminished in heme-replete cells of either BPB species and was not displayed by iron-replete Escherichia coli cells, which bound as much hemin in the absence of RSA as did P. intermedia. Hemin binding by BPB was reduced following treatment with protein-modifying agents (heat, pronase, and N-bromosuccinimide) and was blocked by protoporphyrin IX and hemoglobin but not by Congo red. Hemopexin also inhibited bacterial hemin binding. These findings indicate that both P. gingivalis and P. intermedia express heme-repressible proteinaceous hemin-binding sites with affinities intermediate between those of serum albumin and hemopexin. P. gingivalis exhibited a 10-fold-greater specific binding affinity and greater heme storage capacity than did P. intermedia, suggesting that the former would be ecologically advantaged with respect to heme acquisition.  相似文献   

15.
Hemin (iron protoporphyrin IX) is a crucial component of many physiological processes acting either as a prosthetic group or as an intracellular messenger. Some unnatural, synthetic porphyrins have potent anti-scrapie activity and can interact with normal prion protein (PrPC). These observations raised the possibility that hemin, as a natural porphyrin, is a physiological ligand for PrPC. Accordingly, we evaluated PrPC interactions with hemin. When hemin (3-10 microM) was added to the medium of cultured cells, clusters of PrPC formed on the cell surface, and the detergent solubility of PrPC decreased. The addition of hemin also induced PrPC internalization and turnover. The ability of hemin to bind directly to PrPC was demonstrated by hemin-agarose affinity chromatography and UV-visible spectroscopy. Multiple hemin molecules bound primarily to the N-terminal third of PrPC, with reduced binding to PrPC lacking residues 34-94. These hemin-PrPC interactions suggest that PrPC may participate in hemin homeostasis, sensing, and/or uptake and that hemin might affect PrPC functions.  相似文献   

16.
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. Iron is utilized by this pathogen in the form of heme and has been shown to play an essential role in its growth and virulence. Recently, considerable attention has been given to the characterization of various secreted and surface-associated proteins of P. gingivalis and their contribution to virulence. In particular, the properties of proteins involved in the uptake of iron and heme have been extensively studied. Unlike other Gram-negative bacteria, P. gingivalis does not produce siderophores. Instead it employs specific outer membrane receptors, proteases (particularly gingipains), and lipoproteins to acquire iron/heme. In this review, we will focus on the diverse mechanisms of iron and heme acquisition in P. gingivalis. Specific proteins involved in iron and heme capture will be described. In addition, we will discuss new genes for iron/heme utilization identified by nucleotide sequencing of the P. gingivalis W83 genome. Putative iron- and heme-responsive gene regulation in P. gingivalis will be discussed. We will also examine the significance of heme/hemoglobin acquisition for the virulence of this pathogen.  相似文献   

17.
Okano S  Shibata Y  Shiroza T  Abiko Y 《Proteomics》2006,6(1):251-258
Porphyromonas gingivalis is a Gram-negative anaerobic pathogen associated with chronic periodontitis. Although anaerobic, P. gingivalis exhibits a high degree of aerotolerance, which enables it to survive within periodontal pockets. The aim of the present study was to examine the effect of oxidative stress on protein expression in P. gingivalis to obtain a better understanding of the mechanism underlying its aerotolerance. To accomplish this, P. gingivalis cells were grown under conditions of hemin limitation (0.01 microg/mL) to avoid the oxygen protective effect of hemin on oxidative stress. The proteins were then extracted from cultures either left untreated or subjected to oxidative stress and separated by 2-DE. The resultant protein expression profiles were examined by image scanning, and those found to differ depending on the presence or absence of aeration were subjected to MALDI-MS and then analyzed using the ORF database of P. gingivalis W83 from The Institute of Genomic Research. Oxidative stress was found to affect the expression of numerous proteins in P. gingivalis cells. In particular, the levels of HtpG, GroEL, DnaK, AhpC, TPR domain protein, and trigger factor were substantially increased.  相似文献   

18.
Inhibition of human lymphocyte ferrochelatase activity by hemin   总被引:1,自引:0,他引:1  
Ferrochelatase activity in human lymphocytes was found to be 50% inhibited by 10.5 microM hemin under maximal velocity conditions. The inhibition was not prevented by dithiothreitol or glutathione, suggesting that the hemin was not interacting with the sulphydryl groups of ferrochelatase. Human serum albumin, but not bovine serum albumin was able to prevent the inhibition consistent with the known formation of the tightly bound methemalbumin complex with human albumin. Kinetic studies performed under initial velocity conditions with hemin concentrations ranging from 2 to 8 microM revealed the inhibition to be non-competitive with respect to the metal substrate (zinc) and competitive with respect to the porphyrin substrate (mesoporphyrin). The kinetic analysis indicated that hemin binds to both the enzyme and enzyme-metal complex at a site normally occupied by the porphyrin substrate, and a second molecule of hemin could bind to the enzyme-metal complex but with a much lower affinity than the first molecule. We conclude that the product inhibition of ferrochelatase by hemin should be considered as a possible site of regulation of heme biosynthesis.  相似文献   

19.
It has been known that Porphyromonas gingivalis has an obligate requirement for hemin or selected heme- or Fe-containing compounds for its growth. In addition, the influence of hemin on the expression of several putative virulence factors produced by this bacterium has also been recently documented; however, the mechanisms involved in hemin uptake are poorly defined. We succeeded in cloning the gene coding for the 35-kDa protein, which was specifically expressed in P. gingivalis and seemed to confer colonizing activities. Recently, we have constructed the P. gingivalis 381 mutant defective in the 35-kDa protein by insertion mutagenesis. The beige mutant exhibited little co-aggregation and the virulence was also decreased. Based on these results and homology search analysis, we focused on assessing the hemin bindings and found the heme regulatory motif (HRM) as a hemin direct binding site. The 35-kDa protein did possess the binding ability of selected protoporphyrins involving the hemin. These results demonstrated that 35-kDa protein is one of the hemin binding proteins in P. gingivalis and suggested that hemin binding ability of 35-kDa protein is important for the expression of virulence in P. gingivalis.  相似文献   

20.
Heme (Fe-protoporphyrin IX), an endogenous porphyrin derivative, is an essential molecule in living aerobic organisms and plays a role in a variety of physiological processes such as oxygen transport, respiration, and signal transduction. For the biosynthesis of heme or the mitochondrial heme proteins, heme or its biosynthetic precursor porphyrin must be transported into mitochondria from cytosol. The mechanism of porphyrin accumulation in the mitochondrial inner membrane is unclear. In the present study, we analyzed the mechanism of mitochondrial translocation of porphyrin derivatives. We showed that palladium meso-tetra(4-carboxyphenyl)porphyrin (PdTCPP), a phosphorescent porphyrin derivative, accumulated in the mitochondria of several cell lines. Using affinity latex beads, we showed that 2-oxoglutarate carrier (OGC), the mitochondrial transporter of 2-oxoglutarate, bound to PdTCPP, and in vitro PdTCPP inhibited 2-oxoglutarate uptake into mitochondria in a competitive manner (Ki = 15 microM). Interestingly, all types of porphyrin derivatives examined in this study competitively inhibited 2-oxoglutarate uptake into mitochondria, including protoporphyrin IX, coproporphyrin III, and hemin. Furthermore, mitochondrial accumulation of porphyrins was inhibited by 2-oxoglutarate or OGC inhibitor. These results suggested that porphyrin accumulation in mitochondria is mediated by OGC and that porphyrins are able to competitively inhibit 2-oxoglutarate uptake into mitochondria. This is the first report of a putative mechanism for accumulation of porphyrins in the mitochondrial inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号