首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大叶黄杨叶片内部光能利用梯度   总被引:3,自引:0,他引:3  
采用一种新方法来测量大叶黄杨叶片(Euonymus japonicusT.)内部的绝对光能利用效率梯度曲线。该方法基于光声光谱的深度分析(Depth-Analysis)理论,并结合了光纤微探测器的叶片光梯度测量结果。日本小檗(Berberis thunbergii DC.)叶片的光声光谱扫描显示了深度分析的精确性。实验结果表明:叶片内部利用光能效率最低处在栅栏组织和海绵组织之间(入射光能0.026%-660nm红光);越靠近叶片的上表皮和下表皮,显示出叶片组织利用光能效率有上升的趋势(分别为0.092%和0.036%)。因此,不同叶肉组织绝对光能利用效率是不同的,该实验结果直接证实了Han和Vogelmann(1999)所提出的假设。  相似文献   

2.
Blue light gradients in the pulvini of soybean ( Glycine max var. Northrup King S1346) leaves with different laminar orientations were examined with a fiber optic microprobe. The gradients changed markedly as a function of both incident light angle and leaf position and were determined largely by the amount of light present in the adaxial side of the pulvinus. The steepest gradient for inclined leaves was with light incident at 90° whereas for declined leaves it occurred when the light was incident at 150°. A proposed pulvinar mechanism which allows for the detection of light direction and leaf position by using the blue light gradient as an orientation signal could account for solar tracking by soybean.  相似文献   

3.
Measurement of light within thin plant tissues with fiber optic microprobes   总被引:1,自引:0,他引:1  
Vogelmann, T. C., Knapp, A. K., McClean, T. M. and Smith, W. K. 1988. Measurement of light within thin plant tissues with fiber optic microprobes. - Physiol. Plant. 72: 623–630.
The measurement of light with fiber optic microprobes has been extended to thin (200–300 μm) plant tissue samples. To test the method, light measurements were made in thin aqueous films and paradermal sections from 10-day-old etiolated Cucurbita pepo L. cv. Fordhook cotyledons. The measurements obtained were highly reproducible. Paradermal sections of spongy mesophyll that were irradiated with collimated light scattered light more effectively than the palisade layer of intact cotyledons. These results demonstrate that different plant tissues have different light scattering characteristics. The successful extension of the fiber optic microprobe technique to thin systems makes it possible to examine the optical properties of different cell layers within leaves and other plant organs.  相似文献   

4.
Abstract. The distribution of chlorophyll fluorescence was measured within leaves of Medicago saliva with a fibre optic microprobe. Leaves were irradiated with broad band blue light (1000 μmol m−2s−1) and chlorophyll fluorescence was measured at 688 nm. The amount of fluorescence measured within the leaf depended upon the direction in which the probe was inserted. When the probe was advanced directly through the leaf from the shaded towards the irradiated surface, the maximum amount of detected fluorescence occurred near the boundary between the palisade and spongy mesophyll. When the probe was advanced through the leaf from the opposite direction maximum detected fluorescence was at the boundary between the epidermis and palisade. These results appear to be a consequence of the blue light gradient, which declined exponentially within the palisade but was counterbalanced by increasing chlorophyll content within the leaf. Modelling indicates that the measured distribution of chlorophyll fluorescence can be explained by relatively uniform emission of fluorescence throughout the palisade layer, indicating that the chloroplasts may be photosynthetically specialized to their light environment within the leaf.  相似文献   

5.
Abstract The manufacturing of a new spherical fibre-optic microsensor is described. The microsensor measures scalar irradiance, i.e. the spherically integrated light at a point in space. The light collector of the probe was a 70-μm diffusing sphere cast on the tip of a 125-μm wide optical fibre tapered down to 15–20 μm diametre. The microsensor had an isotropic (±10%) response from −160° to +160° over the whole spectral range from 400–900 nm in air as well as in water. The microsensor was coupled to a sensitive spectroradiometre and the spectral distribution of scalar irradiance in sediments was measured at 100 μm spatial resolution. Light was available for photosynthesis near the sediment surface at a higher intensity and a different spectral composition than could be expected from the illumination. By the combination of oxygen microelectrodes and the present fibre-optic microsensor it is now possible to study the depth distribution of microbenthic photosynthesis in relation to the available photosynthetically active radiation at ≤ 100 μ m resolution.  相似文献   

6.
Light and chlorophyll gradients within Cucurbita cotyledons   总被引:5,自引:4,他引:1  
Abstract. Measurement of light within 10–14-d-old green and etiolated Cucurbita pepo cotyledons were made with fibre-optic microprobes to assess the influence of chlorophyll distribution and anatomical variations in mesophyll cell type (spongy versus palisade) on internal light pattern. More than 50% of the pigment in green cotyledons occurred in the upper (adaxial) 300 μm and this gradient strongly influenced the internal propagation of 680 nm light. When the upper (adaxial) surface was irradiated with 680 nm light, almost complete absorption occurred within the first 400 μm (palisade) of approximately 1200-μm-thick cotyledons. In contrast, when lower (abaxial) surfaces were irradiated with 680 nm light, penetration extended throughout the spongy mesophyll to about the 700 μm depth. Measurements of collimaled and scattered light gradients at 550, 680 and 750 nm indicated that collimaled light was rapidly scattered by mesophyll cells. In cotyledons irradiated on the upper surface, spongy mesophyll cells received only scattered light. Furthermore, comparisons of scattered light gradients obtained from cotyledons irradiated on upper and lower surfaces suggested that spongy mesophyll cells scatter light more effectively than palisade cells, probably due to the greater proportion of intercellular air spaces in spongy mesophyll tissue. These data also indicate that both the spectral quality and quantity of light incident on palisade versus spongy mesophyll cells differs, perhaps contributing to developmental and physiological differences between these two mesophyll cell types.  相似文献   

7.
Chlorophyll fluorescence was used to estimate profiles of absorbed light within chlorophyll solutions and leaves. For chlorophyll solutions, the intensity of the emitted fluorescence declined in a log–linear manner with the distance from the irradiated surface as predicted by Beer's law. The amount of fluorescence was proportional to chlorophyll concentration for chlorophyll solutions given epi‐illumination on a microscope slide. These relationships appeared to hold for more optically complex spinach leaves. The profile of chlorophyll fluorescence emitted by leaf cross sections given epi‐illumination corresponded to chlorophyll content measured in extracts of leaf paradermal sections. Thus epifluorescence was used to estimate relative chlorophyll content through leaf tissues. Fluorescence profiles across leaves depended on wavelength and orientation, reaching a peak at 50–70 µm depth. By infiltrating leaves with water, the pathlengthening due to scattering at the airspace : cell wall interfaces was calculated. Surprisingly, the palisade and spongy mesophyll had similar values for pathlengthening with the value being greatest for green light (550 > 650 > 450 nm). By combining fluorescence profiles with chlorophyll distribution across the leaf, the profile of the apparent extinction coefficient was calculated. The light profiles within spinach leaves could be well approximated by an apparent extinction coefficient and the Beer–Lambert/Bouguer laws. Light was absorbed at greater depths than predicted from fibre optic measurements, with 50% of blue and green light reaching 125 and 240 µm deep, respectively.  相似文献   

8.
利用自制的光纤微探测器研究了大叶黄杨 (EuonymusjaponicusT .)叶片内部的光分布。叶片表皮组织具有聚光效应 ,用金相砂纸磨去叶片的上表皮组织可以去除这种效应。用 6 6 0nm的红光照射叶片时 (从上表皮方向 ) ,叶片内部光量迅速下降 ,在不到 10 0 μm的路径上光量下降到初始值的 2 0 %。叶片内部光分布微分曲线说明 :叶片表皮组织的存在有利于叶片内部各组织之间光吸收的均匀化。分析叶片内部红光分布曲线 (照射上表皮方向以及照射下表皮方向 ) ,海绵组织对红光 (6 6 0nm)吸收较少 ,这可能是海绵组织的一种生理生态意义上适应性的反映  相似文献   

9.
Abstract The vertical zonation of light, O2, H2S, pH, and sulfur bacteria was studied in two benthic cyanobacterial mats from hypersaline ponds at Guerrero Negro, baja California, Mexico. The physical-chemical gradients were analyzed in the upper few mm at ≥ 100 μm spatial resolution by microelectrodes and by a fiber optic microprobe. In mats, where oxygen produced by photosynthesis diffused far below the depth of the photic zone, colorless sulfur bacteria ( Beggiatoa sp.) were the dominant sulfide oxidizing organisms. In a mat, where the O2–H2S interface was close to the photic zone, but yet received no significant visible light, purple sulfur bacteria ( Chromatium sp.) were the dominant sulfide oxidizers. Analysis of the spectral light distribution heare showed that the penetration of only 1% of the incident near-IR light (800–900 nm) into the sulfide zone was sufficient for the development of Chromatium in a narrow band of 300 μm thickness. The balance betweem O2 and light penetration down into the sulfide zone thus deterined in mcro-scale which type of sulfur bacteria becamed dominant.  相似文献   

10.
Pea plants ( Pisum sativum L. ev. Greenfeast) were grown for 2 to 3 weeks in while (˜ 50 μmol photons m−2 s−1; 400–700 nm) or green (˜ 30 μmol photons m−2 s −1 400–700 nm) light (16 h day/8 h night), with or without far-red light. Supplementary far-red light decreased leaf area and increased internodal length in both white and green light, demonstrating that phytochrome influenced leaf size and plant growth. However, there was no effect of far-red light on chlorophyll a /chlorophyll b ratios, chlorophyll-protein composition, the stoichiometry of electron transport complexes or photosynthetic function of isolated thylakoids. These results suggest that phytochrome is ineffective in modulating the composition and function of thylakoids in pea plants grown at low irradiance. One possible explanation of the ineffectiveness of phytochrome on thylakoids is discussed in terms of the drastic attenuation of red relative to far-red light in green tissue.  相似文献   

11.
The internal structure of plant tissues was visualized with optical coherence tomography (OCT). This noninvasive method is suitable for examining intact plants; it produces two-dimensional images of plant tissues at a penetration depth of 1–2 mm from the surface. The potential use of OCT was assessed on Tradescantia blossfeldiana Mild. Plant tissue images measuring 1.5 × 2 mm were obtained in vivo with a spatial resolution of 15 m. The radiation power incident on a sample was 0.5 mW. The acquisition of a two-dimensional image consisting of 200 × 200 pixels required 1–3 s. The OCT method can be used to visualize not only plant tissues and tissue boundaries but also the structure of individual cells.  相似文献   

12.
An omni-directional fibre optic microprobe was used to measure the quantity and quality of light within the leaves of six succulents having epidermal windows, three species having a subterranean growth habit (Haworthia truncata, Lithops olivacea, and Opthalmophyllum longum) and three growing above ground (Peperomia dolabriformis, P. graveolens, and the sprawling vine Senecio rowleyanus). Although light levels at most locations inside the leaves of all species were high, near those incident on the window surfaces, light levels inside the leaves of the two species of Peperomia often greatly exceeded incident light levels, indicating considerable light scattering and focusing by the leaf tissue. The spectral quality of light inside the leaves of all taxa reflected the absorption properties of chlorophyll, with most of the photons in the green wavelengths. Light quality and quantity inside the leaves did not correlate with the growth habit of the plants, the size of the window (as a proportion of the total leaf area), or location inside the leaf, although light levels generally declined and wavelengths increased deeper in the leaves. Application of reflective tape to the windows reduced internal light levels in L. olivacea and S. rowleyanus, although reductions were not always statistically significant. Although light levels throughout the leaves of P. graveolens were substantially and significantly reduced as a result of the application of reflective tape to its windows, the light levels even at the basal chlorenchyma on the abaxial side of the leaf remained high. In all species investigated, the levels of near-infrared radiation inside the leaves were surprisingly high, yet also declined deeper inside the succulent leaves. This near-infrared radiation may add to the heat load of these plants. Furthermore, application of reflective tape to the windows also reduced the amount of near-infrared radiation inside the leaves of the three succulents examined. These results led to a novel, testable hypothesis that may help to explain previous findings that application of reflective tape to the windows of the leaves of these succulents did not effect a reduction in photosynthetic activity.  相似文献   

13.
Light gradients were measured in leaves that had different types of anatomical development of the mesophyll but similar pigment content. Leaves of the legume, Thermopsis montana, had columnar palisade and spongy mesophyll whereas leaves of the monocot, Smilacina stellata, had spongy mesophyll only. Light gradients were measured at 550 nm in both types of leaves when they were irradiated with collimated or diffuse light. When irradiated with collimated light, light gradients were steeper in leaves with spongy mesophyll in comparison to those that had palisade tissue. On the other hand, light gradients were similar between both leaf types when they were irradiated with diffuse light. Thus, columnar palisade cells facilitated the penetration of collimated light over diffuse light. These results suggest that palisade tissue may help distribute light more uniformly to chloroplasts within the leaf. Moreover, the functional significance of palisade tissue may be related to the amount of collimated light within the natural environment.  相似文献   

14.
Activities of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured in leaf extracts of field grown Amaranthus paniculatus L. (C4) during a natural diurnal irradiance and temperature pattern. Enzyme assays were run at both fixed (30°C) and the corresponding leaf temperature at the time of harvest. Light activation of PEP carboxylase (PEPCase) at fixed assay temperatures was expressed as a decrease in S0–5 (PEP) after a threshold (> 330 μmol m–2 s–1) photon fluence rate was surpassed at noon. Earlier in the morning, increase in apparent enzyme affinity for PEP was observed when the assay was run at leaf temperature, indicating a physiologically meaningfull effect of temperature on S0.5 (PEP). The 3.3-fold increase in PEPCase activity at low PEP and fixed assay temperature between the minimal and maximal irradiance and temperature hours of the day, became 12.8-, 11.5- and 7.4-fold when assays were run at the corresponding leaf temperature during three diurnal cycles with respective temperature differences (max minus min) of 9.0, 8.3 and 7.4°C. The extent of malate inhibition was the same for both day and night forms of PEPCase assayed at 35°C, but increased considerably with night enzyme at 25°C. The results indicate that light increases the apparent affinity of PEPCase for PEP and that at lower temperatures malate becomes more inhibitory. Pyruvate orthophosphate dikinase activity started to increase immediately after sunrise and the 10-fold increase at fixed temperature became 14.8-, 14.2- and 13.1-fold when assays were run at the above leaf temperatures. This indicates that the light effect predominates with pyruvate, orthophosphate dikinase, while with phosphoenolpyravate carboxylase, light and temperature co-operate to increase the day enzyme activities.  相似文献   

15.
A fiber optic microprobe, 5.5 m in diameter, was used as a detector to measure the light intensity profile at the distal cell surface of Phycomyces blakesleeanus (Burgeff) sporangiophores that were irradiated unilaterally by a collimated xenon source. The light intensity at a fixed location of the cell surface showed large random variations over time which were probably the result of optical effects of particles being carried past the probe by cytoplasmic streaming. The intensity profile, formed around the distal periphery of the cell by the lens action of the sporangiophore, was determined from intensity measurements made while the probe was held fixed and the incident beam direction was varied in angle of azimuth. The resulting profile consisted of two steeply rising sides enclosing a central plateau or shallow well which ranged in fluence rate from 1.6 to 2.2 times that of the incident beam. These experimental findings differ from theoretical modeling where much greater contrast between the sides and central portion of the lens profile was predicted. These results also indicate that the mechanism of phototropic sensory perception in Phycomyces may filter out cytoplasmic light flicker and may not require strong contrasting regions within the lens profile to detect light direction.  相似文献   

16.
Leaf Diffusive Conductance and Tap Root Cell Turgor Pressure of Sugarbeet   总被引:2,自引:2,他引:0  
Abstract. The interrelationships of leaf diffusive conductance, tap root cell turgor pressure and the diameter of the tap root of sugarbeet were studied. The study was conducted on well-watered plants growing in pots under artificial light in the glasshouse. In a typical experiment, on illumination (400 μmol m−2 s−1) leaf conductance increased from 0.6 to 7.4 mm s−1. Cell turgor pressure in the tap root decreased from 0.8 MPa to 0.45 MPa and the root diameter (9.0 cm) contracted by 145μm. Removal of light resulted in the reversal of each of the above parameters to their previous values. Quantitively similar results were obtained when sugar beet plants were uprooted and the response of each of the parameters was measured. The sequence of events however was different. On stimulation by light, changes in leaf diffusive conductance preceded the turgor and root diameter changes (which were simultaneous) by some 15–20min. In contrast, on uprooting the simultaneous changes in root turgor pressure and diameter preceded the changes in leaf conductance. The lag times between changes in diffusive conductance and turgor pressure in the root were between 20 and 30 min.
Tap root turgor pressure and diameter correlated strongly and permitted the calculation of an apparent whole root volumetric elastic modules (55–63 MPa). The small changes in tissue volume relative to the transpiration rate suggest that the tap root is not a significant source of transpirational water during the day.  相似文献   

17.
甜瓜幼苗叶片光合变化特性   总被引:3,自引:1,他引:2  
为探讨甜瓜光响应变化特性与环境因子的关系,选择光响应曲线适宜测定的时段,以甜瓜幼苗为试材,将1 d分为3个时段:10:00-12:00、12:00-15:00和15:00-17:00,每个叶位叶片测定1 d,并采用直角双曲线修正模型拟合光响应曲线,研究不同时段下甜瓜叶片光响应曲线、光响应参数的变化趋势和不同叶位叶片光响应参数特性。结果表明:当环境中光合有效辐射增强,叶面温度(Tl)升高,空气相对湿度(RH)降低;当环境中光合有效辐射减弱,Tl降低,RH升高。10:00-12:00光响应曲线和12:00-15:00的第1-4叶光响应曲线呈双曲线,在强光下趋向饱和状况,12:00-15:00的第5叶光合速率和15:00-17:00光合速率在强光下出现明显的光抑制现象。1 d的不同时段均表现为10:00-12:00最大净光合速率(Pmax)和光饱和点(LSP)最高,12:00-17:00降低;12:00-15:00光补偿点(LCP)和暗呼吸速率(Rd)较高,其它两个时段较低,10:00-17:00光补偿点量子效率(φc)、气孔导度(Gs)和胞间CO2浓度(Ci)总体呈降低趋势,气孔限制值(Ls)升高。10:00-15:00相同时段测得的不同叶位叶片光响应参数,以第4-5叶光合性能较好,15:00-17:00以第3叶Pmax最高,第5叶次之;10:00-17:00 GsCi以第5叶较低,第1叶较高,Ls以第5叶较高,第1叶较低。RH为影响Pmax的主要决策因子,测定时段、叶面饱和蒸汽压亏缺(Vpdl)和Tl为主要限制因子。10:00-12:00适宜进行光响应曲线测定,气孔限制为不同时段光合作用不同的主要因素,非气孔限制为影响不同叶位叶片光合作用的主要因素。  相似文献   

18.
Larval golden perch, Macquaria ambigua , and silver perch, Bidyanus bidyanus , were exposed to light gradients in wavebands centred on 400, 496, 601 and 695 nm at nominal quantum irradiance values of 0–1, 1–0 and 10 μmol m−2 s−l. Silver perch larvae displayed stronger phototactic behaviour than golden perch, and both species were most responsive to light in the 601 nm waveband. The intensity of phototactic responses in both species was greater at higher irradiance levels. Enhanced responsiveness to longer wavelengths reflects possible adaptations to life in turbid habitats where the underwater light field is dominated by yellow/orange wavebands.
At night, traps fitted with 12 h yellow lightsticks attracted more golden perch larvae than traps with blue, green, orange, red or no lightstick. The efficacy of yellow lightsticks may be due to yellow/orange wavebands not being attenuated under water as rapidly as blue or red wavebands. Yellow lightsticks also emit a greater intensity of light over a longer time than other colours tested, which may have increased the effectiveness of yellow traps. Light traps were ineffective during the day.  相似文献   

19.
Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea   总被引:14,自引:9,他引:5  
Abstract. Light gradients were measured and correlated with chlorophyll concentration and anatomy of leaves in spinach (Spinacia oleracea L.). Light gradients were measured at 450, 550 and 680 nm within thin (455 μm) and thick (630 μm) leaves of spinach grown under sun and shade conditions. The light gradients were relatively steep in both types of leaves and 90% of the light at 450 and 680 nm was absorbed by the initial 140 μm of the palisade. In general, blue light was depleted faster than red light which, in turn was depleted faster than green light. Light penetrated further into the thicker palisade of sun leaves in comparison to the shade leaves. The distance that blue light at 450 nm travelled before it became 90% depleted was 120 μm in sun leaves versus 76 μm in shade leaves. Red light at 680 nm and green light at 550 nm travelled further but the trends were similar to that measured at 450nm. The steeper light gradients within the palisade-of shade leaves were caused by increased scattering of light within the intercellular air spaces and/or cells which were less compact than those in sun leaves. The decline in the amount of light within the leaf appeared to be balanced by a gradient in chlorophyll concentration measured in paradermal sections. Progressing from the adaxial epidermis, chlorophyll content increased through the palisade and then declined through the spongy mesophyll. Chlorophyll content was similar in the palisade of both sun and shade leaves. Chloroplast distribution within both sun and shade leaves was relatively uniform so that the chlorophyll gradient appeared to be caused by greater amounts of chlorophyll within chloroplasts located deeper within the leaf. These results indicate that the anatomy of the palisade may be of special importance for controlling the penetration of photo-synthetically active radiation into the leaf. Changing the structural characteristics of individual palisade cells or their arrangement may be an adaptation that maximizes the absorption of light in leaves with varying mesophyll thickness due to different ambient light regimes.  相似文献   

20.
Light gradients and spectral regime were measured in Lactuca sativa L. cv. Grand Rapids achenes using fiber optic microsensors. The distribution of scattered light across lettuce achenes was linear for 660 and 730 nm and non-linear for 450 nm light. Spectra for scattered light within intact achenes also showed a non-linear increase with wavelength. The preferential attenuation of blue light by the pericarp and seed explains in part the relative ineffectiveness of blue light with respect to red in triggering germination of lettuce. Calculated action spectra for phytochrome-stimulated germination agree closely in the red with experimentally derived action spectra; however, there is little agreement within the blue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号