首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary Galactans, the storage polysaccharides in the perivitelline fluid of many snails showed a high degree of species-specificity as revealed by quantitative precipitin formations with lectins, polyclonal antisera, myeloma proteins as well as by the reactivity with the enzyme galactose oxidase. However, their chemical compositions were remarkably similar since thed-Gal residues were all linked 13 and 16 glycosidically.The specificity seemed to be related to the different degrees of branching in the various galactans but could also be due to some other minor constituents in some galactans such asl-galactose or phosphate.In this study a Radioimmunoassay was developed using the galactan of the snailLymnaea stagnalis to elucidate those differences which were only related to a unique distribution of the 13 and 16 linkages, since this galactan was composed exclusively ofd-galactose residues. The galactan was labeled by sequential oxidation with galactose oxidase and reduction with tritiated sodium borohydride. Inhibition of the binding of the labeled galactan to insolubilized antibodies was investigated by galactans of different species, their chemically modified products, andd-galactose-composed oligosaccharides of unambiguously identified structures.Inhibition byLymnaea stagnalis galactan was about 45 000 times that ofHelix pomatia galactan. The most complementary oligosaccharide found was -d-Gal13[-d-Gal16]-d-Gal11l-Gro, being about 200 times more effective thand-Gal. However, a fraction with molecular weights between 700 and 1000 isolated from the partially hydrolized galactan was still seven times more effective. From the reactivity of the antiserum with the different oligosaccharides tested the following structure was inferred which most likely represented the complete determinant recognized by the antiserum: -d-Gal13[-d-Gal16]-d-Gal16[-d-Gal13]-d-Gal1. This determinant seemed to be most common inLymnaea stagnalis galactan and its frequency of occurrence appears to correspond to the inhibitory potency of other snail galactans.  相似文献   

2.
Summary Effects of -galactosidase (from green coffee beans) digestion on lectin staining were examined in formalin-fixed, paraffin-embedded human pancreatic tissues from individuals of blood-group B and AB. Digestion with the enzyme resulted in almost complete loss of Griffonia simplicifolia agglutinin I-B4(GSAI-B4) staining in the acinar cells with concomitant appearance of Ulex europaeus agglutinin-I(UEA-I) staining in the corresponding cells. In addition, reactivity with soybean agglutinin(SBA) was also imparted by the enzyme digestion in GSAI-B4 positive acinar cells. -Galactosidase digestion following -galactosidase digestion neither reduced the reactivity with SBA nor induced the reactivity with Griffonia simplicifolia agglutinin-II(GSA-II) in GSAI-B4 positive cells, while in UEA-I positive cells, both reduction of SBA reactivity and appearance of GSA-II reactivity occurred after simple -galactosidase digestion as well as sequential digestion with - and -galactosidase. However, when -l-fucosidase digestion procedure was inserted between - and -galactosidase digestion, UEA-I staining imparted by -galactosidase digestion was markedly decreased in intensity and GSA-II reactivity was appeared in GSAI-B4 positive acinar cells. Furthermore, after sequential digestion with -galactosidase and fucosidase, reactivity with peanut agglutinin(PNA) was revealed in GSAI-B4 positive acinar cells as well as UEA-I positive cells in secretors. In non-secretors, strong PNA staining was usually observed in the acinar cells throughout the glands without enzyme digestion. These results confirmed that the -galactosidase induced GSA-II reactivity and the fucosidase induced PNA reactivity are due to precursors of different kinds of blood-group determinants and suggest that at least two kinds of B antigen determinants, i.e. Gal(1-3)[Fuc(1-2)]Gal(1-3,4)GlcNac and Gal(1-3)-[Fuc(1-2)]Gal(1-3)GalNAc are produced in GSAI-B4 positive acinar cells. The synthesis of the latter type of B antigen is assumed to be controlled under the secretory gene in human pancreas.Abbreviation GalNAc N-acetyl-d-galactosamine - Gal d-galactose - GlcNAc N-acetyl-d-glucosamine - Fuc l-fucose - NeuNAc N-acetylneuraminic acid (sialic acid)  相似文献   

3.
d-Cysteine desulfhydrase of Escherichia coli W3110 trpED102/F trpED102 was physiologically characterized. It was found to be located in the cytosolic fraction, as 3-chloro-d-alanine dehydrochlorinase is. d-Cysteine desulfhydrase catalyzed not only the ,-elimination reaction of O-acetyl-d-serine to form pyruvate, acetic acid and ammonia, but also the -replacement reaction of O-acetyl-d-serine with sulfide to form d-cysteine. However, these reactions appeared not to proceed in vivo. No other activity of d-cysteine synthesis from O-acetyl-d-serine and sulfide was detected in a crude cell extract of E. coli which was immunotitrated with antibodies raised against the purified d-cysteine desulfhydrase. Although d-cysteine desulfhydrase catalyzes the degradation (,-elimination reaction) of 3-chloro-d-alanine, which is an effective antibacterial agent, E. coli W3110 trpED102/F trpED102 did not show resistance against 3-chloro-d-alanine. Therefore, d-cysteine desulfhydrase does not contribute to 3-chloro-d-alanine detoxification in vivo.  相似文献   

4.
4-Methylumbelliferyl 6-O-benzyl--d-lactoside (6Bn-MU-Lac) and some related compounds were synthesizedvia different selective reactions including phase-transfer glycosylation. Their suitability as substrates for a fluorometric assay of ceramide glycanase (CGase) was evaluated. Among others, the 6Bn-MU-Lac, which is resistant to exogalactosidase, was found to be a suitable substrate for routine assay of the CGase activity. For American leech CGase, theK m value is 0.232 mM at pH 5. Abbreviations: CGase, ceramide glycanase; Gal, galactose; Glc, Glucose; Lac, lactose; MU, 4-methylumbelliferone; MU-Lac, 4-methylumbelliferyl -d-lactoside; bBn-Lac, 6-O-benzyl-lactose; 6Bn-MU-Lac, 4-methylumbelliferyl 6-Obenzyl--d-lactoside; 46Bd-MU-Lac, 4-methylumbelliferyl 4,6-O-benzylidene--d-lactoside; MU-Cel, 4-methylumbellifery -d-cellobioside; 46Bd-MU-Cel, 4-methylumbelliferyl 4,6-O-benzylidene--d-cellobioside; TLC, thin layer chromatography;1H-NMR, proton nuclear magnetic resonance; GSL, glycosphingolipids; CSA, 10-camphorsulfonic acid. See Scheme 1 for chemical structures.  相似文献   

5.
N-acetylhexosaminidase fromNocardia orientalis catalysed the synthesis of lacto-N-triose II glycoside (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OMe,3) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OMe (4) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OMe (5) throughN-acetylglucosaminyl transfer fromN,N-diacetylchitobiose (GlcNAc2) to methyl -lactoside. The enzyme formed the mixture of trisac-charides3, 4 and5 in 17% overall yield based on GlcNAc2, in a ratio of 20:21:59. Withp-nitrophenyl -lactoside as an acceptor, the enzyme also producedp-nitrophenyl -lacto-N-trioside II (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p,6) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p (7) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OC6H4NO2-p (8). In this case, when an inclusion complex ofp-nitrophenyl lactoside acceptor with -cyclodextrin was used, the regioselectivity of glycosidase-catalysed formation of trisaccharide glycoside was substantially changed. It resulted not only in a significant increase of the overall yield of transfer products, but also in the proportion of the desired compound6.Abbreviations GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1-4)-2-acetamido-2-deoxy-d-glucose - NAHase N-acetylhexosaminidase - -CD -cyclodextrin  相似文献   

6.
Negative-ion fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from heparin and heparan sulfate. The positional isomers of the sulfate group of monosulfated disaccharides were distinguished from each other by negative-ion fast atom bombardment tandem mass spectra, which provide an easy way of identifying the positional isomers. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of di- and trisulfated disaccharides.Abbreviations FABMS fast atom bombardment mass spectrometry - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - UA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - Hep heparin - HS heparan sulfate - UA(14) GlcNAc 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNAc 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcN6S 2-amino-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcN 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcN6S 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcNS 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNS 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(13)GalNAc 2-acetamido-2-deoxy-3-O-(-d-Gluco-4-enepyranosyluronic acid)-d-galatose - UA(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S(13)GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA(13)GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA(13)GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose.  相似文献   

7.
A newly isolated strain, MU-2, which produces very high -fructofuranosidase activity, was identified asAspergillus japonicus. For enzyme production by the strain, sucrose at 20% (w/v) was the best carbon source and yeast extract at 1.5 to 3% (w/v) the best nitrogen source. Total enzymatic activity and cell growth were at maximum after 48 h, at 1.57×104 U/flask and 0.81 g dry cells/flask, respectively. The optimum pH value of the enzymatic reaction was between 5.0 and 5.5 and the optimum temperature 60 to 65°C. The enzyme produced 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose by fructosyl-transferring activity. The strain was found to be very useful for industrial production of -fructofuranosidase.  相似文献   

8.
Fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from chondriotin sulfate, dermatan sulfate and hyaluronan. The positional isomers of the sulfate group of mono- and disulfated disaccharides were distinguished from each other by both positive- and negative-ion fast atom bombardment tandem mass spectra, which gave sufficient information characteristic of the isomers. The anomeric isomers of nonsulfated disaccharides were characterized by the technique in the positive-ion mode. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of trisulfated disaccharide.Abbreviations FABMS fast atom bombardment mass spectrometry - MI metastable ion - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - SIMS secondary ion mass spectrometry - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - GlcA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - UA-GalNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-galactose - UA-GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA-GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S-GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S-GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S-GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA-GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA2S-GalNAcDiS 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA-GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose  相似文献   

9.
-Fructofuranosidase fromAspergillus japonicus, which produces 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose, was purified to homogeneity by fractionation with calcium acetate and ammonium sulphate and chromatography with DEAE-Cellulofine and Sephadex G-200. Its molecular size was estimated to be about 304,000 Da by gel filtration. The enzyme was a glycoprotein which contained about 20% (w/w) carbohydrate. Optimum pH for the enzymatic reaction was 5.5 to 6. The enzyme was stable over a wide pH range, from pH 4 to 9. Optimum reaction temperature for the enzyme was 60 to 65°C and it was stable below 60°C. The Km value for sucrose was 0.21m. The enzyme was inhibited by metal ions, such as those of silver, lead and iron, and also byp-chloromercuribenzoate.  相似文献   

10.
Summary 5-Br-4-Cl-3-Indoxyl--d-gluco(pyrano)side was found to be the most suitable synthetic substrate for the demonstration of -d-glucosidases in situ. Using an azoindoxyl procedure with hexazotized pararosaniline or new fichsine at pH 5 in freeze-dried celloidine-mounted cryostat sections acid -d-glucosidase (EC 3.2.1.20) was shown for the first time in lysosomes of many cells of fetal and adult rat, mouse, guinea-pig, marmoset and human organs. At pH 6.5, in chloroform-acetone pretreated cryostat sections plasma membrane -d-glucosidases were shown in the brush border of enterocytes of the small and large intestine, in the brush border of proximal renal tubule cells and in the stereocilia of the epididymal duct. In an indigogenic procedure with ferricyanide/ferrocyanide as redox catalysator plasma membrane -d-glucosidases were depicted as well as with the azo-indoxyl method; the demonstration of the acid -d-glucosidase was inferior to that achieved with the azo-indoxyl procedure. Using tetrazolium salts as capture reagent intracellular localization was unsatisfactory. In enterocytes, a localization in the Golgi apparatus was shown by the azo-indoxyl procedure only. Analytical isoelectric focusing revealed organ-dependent differences of plasma membrane and lysosomal -d-glucosidases. Compared with the already existing methods the azo-indoxyl and indigogenic procedures are by far the most suitable techniques.Supported by the German Research Foundation (Sfb 174) and the BMFT (Project CMT 35)  相似文献   

11.
The preparation of benzyl 2,3,6,2,6-penta-O-benzyl--d-lactoside, which is a key intermediate for chemical synthesis of oligosaccharide components of glycosphingolipids, was achieved by an improved method. The 3-O-p-methoxybenzyl and 3-O-methyl derivatives were prepared from benzyl 2,3,6,2,6-penta-O-benzyl--d-lactoside through stannylation. By using benzyl -d-lactoside as starting material, benzyl 3-O-methyl-, 3-O-benzyl- and 3-O-p-methoxybenzyl--d-lactoside were regioselectively synthesized using the same procedure.  相似文献   

12.
Recombinant Penicillium citrinum -1,2-mannosidase, expressed in Aspergillus oryzae, was employed to carry out regioselective synthesis of -d-mannopyranosyl-(12)-d-mannose. Yields (w/w) of 16.68% disaccharide, 3.07% trisaccharide and 0.48% tetrasaccharide were obtained, with 12 linkages present at 98.5% of the total linkages formed. Non-specific -mannosidase from almond was highly efficient in reverse hydrolysis and oligosaccharide yields of 45–50% were achieved. The products of the almond mannosidase were a mixture of disaccharides (30.75%, w/w), trisaccharides (12.26%, w/w) and tetrasaccharides (1.89%, w/w) with 12, 13 and 16 isomers. -1,2-linkage specific mannosidase from P. citrinum and -1,6-linkage-specific mannosidase from Aspergillus phoenicis were used in combination to hydrolyse the respective linkages from the mixture of isomers, resulting in -d-mannopyranosyl-(13)-d-mannose in 86.4% purity. The synthesised oligosaccharides can potentially inhibit the adhesion of pathogens by acting as "decoys" of receptors of type-1 fimbriae carried by enterobacteria.  相似文献   

13.
A simple synthesis of octyl 3,6-di-O-(-d-mannopyranosyl)--d-mannopyranoside is described. The key features of the synthetic scheme are the formation of the -mannosidic linkage by 1-O-alkylation of 2,3,4,6-tetra-O-acetyl-,-d-mannopyranose with octyl iodide and glycosylation of unprotected octyl -d-mannopyranoside using limiting acetobromomannose. The trisaccharide is shown to be an acceptor forN-acetylglucosaminyltransferase-I with aK M of 585 µm.  相似文献   

14.
A Gal1-4GlcNAc (2-6)-sialyltransferase from human liver was purified 34 340-fold with 18% yield by dye chromatography on Cibacron Blue F3GA and cation exchange FPLC. The enzyme preparation was free of other sialyltransferases. It did not contain CMP-NeuAc hydrolase, protease, or sialidase activity, and was stable at –20°C for at least eight months. The donor substrate specificity was examined with CMP-NeuAc analogues modified at C-5 or C-9 of theN-acetylneuraminic acid moiety. Affinity of the human enzyme for parent CMP-NeuAc and each CMP-NeuAc analogue was substantially higher than the corresponding Gal1-4GlcNAc (2-6)-sialyltransferase from rat liver.Abbreviations FPLC fast protein liquid chromatography - NeuAc 5-N-acetyl-d-neuraminic acid - 9-amino-NeuAc 5-acetamido-9-amino-3,5,9-trideoxy-d-glycero-2-nonulosonic acid - 9-acetamido-NeuAc 5,9-diacetamido-3,5,9-trideoxy-d-glycero--d-2-nonulosonic acid - 9-benzamido-NeuAc 5-acetamido-9-benzamido-3,5,9-trideoxy-d-glycero--d-galacto-2-nonulosonic acid - 9-fluoresceinyl-NeuAc 9-fluoresceinylthioureido-NeuAc - 5-formyl-Neu 5-formyl--d-neuraminic acid - 5-aminoacetyl-Neu 5-aminoacetyl--d-neuraminic acid - CMP-NeuAc cytidine-5-monophospho-N-acetylneuraminic acid - GM1 Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc-ceramide - ST sialyltransferase - DTE 1,4-dithioerythritol Enzyme: Gal1-4GlcNAc (2-6)-sialyltransferase, EC 2.4.99.1.  相似文献   

15.
Methyl -isomaltoside and methyl -isomaltotrioside specifically deoxygenated at position C-2 of the terminal glucopyranosyl unit were synthesized by trimethylsilyltriflate-mediated condensation of 3,4,6-tri-O-benzoyl-1-O-tert-butyl(dimethyl)silyl-2-deoxy--d-arabino-hexopyranose with suitably blocked derivatives of methyl -d-glucopyranoside and methyl -isomaltoside, respectively.To whom correspondence should be addressed.  相似文献   

16.
Two trisaccharide glycosides,p-trifluoroacetamidophenylethyl 3-O-(2-acetamido-2-deoxy--d-galactopyranosyl)-2-O-(-l-fucopyranosyl)--d-galactopyranoside andp-trifluoroa-cetamidophenylethyl 2-O-(-l-fucopyranosyl)-3-O-(-d-galactopyranosyl)--d-galactopyranoside, corresponding to the human blood group A and B determinants, were synthesized. A key fucosylgalactosyl disaccharide derivative was glycosylated with galactosaminyl or galactosyl donors, respectively. Dimethyl (thiomethyl)sulfonium tetrafluoroborate was used for thioglycoside activation in coupling reactions.  相似文献   

17.
Zusammenfassung Verglichen mit 1- und 2-Naphthyl--d-glucosid,--d-galactosid,--d-glucuronid,--d-N-acetylglucosaminid,--d-glucosid,--d-galactosid und--d-mannosid werden 1- und 2-Naphthyl--l-fucosid schneller oder im gleichen Ausmaß von Homogenaten verschiedener Rattenorgane hydrolysiert. Trotzdem fällt der histochemische Nachweis der -l-Fucosidasen methodenunabhängig im Gegensatz zu dem der anderen Glykosidasen überwiegend negativ aus. Ursache dafür ist die massive Hemmung der -l-Fucosidase durch Aldehydfixation und Diazoniumsalze; die Inhibitionsrate liegt bei 90% bzw. zwischen 85 und 98%; die - und -d-Glucosidase, - und -d-Galactosidase, -d-Mannosidase, -d-Glucuronidase sowie -d-N-Acetylglucosaminidase werden durch Aldehydfixation oder Kuppler höchstens zu 70% gehemmt. Daher können 1- und 2-Naphthyl--l-fucosid für die histochemische Darstellung der -l-Fucosidase nicht einschränkungslos empfohlen werden. Kleine Mengen Dimethylformamid hemmen die meisten Glykosidasen nicht.Für biochemische Messungen der -l-Fucosidase eignet sich speziell 1-Naphthyl--l-fucosid und läßt sich an Stelle von p-Nitrophenyl--l-fucosid werwenden. Bei der fluorometrischen Untersuchung der -l-Fucosidase in Rattenorganen mit dem 2-Naphthylderivat ergeben sich bemerkenswerte Aktivitätsunterschiede.
Suitability of naphthyl--l-fucosides for the investigation of -l-fucosidases
Summary In comparison with 1- and 2-naphthyl -d-glucoside, -d-galactoside, -d-glucuronide, -d-N-acetylglucosaminide, -d-glucoside, -d-galactoside and -d-mannoside 1- and 2-naphthyl -l-fucoside are hydrolyzed more quickly or to the same extent by homogenates prepared from freezedried cryostate sections of various rat organs. Nevertheless, when the fucosides are employed for the histochemical demonstration of -l-fucosidase mostly negative data were obtained independent on the method used, whereas all other naphthyl glycosides deliver positive results. The reasons for these discrepancies are the marked inhibition of -l-fucosidase by aldehyde fixation and diazonium salts. Then, -l-fucosidase activity is suppressed to 90% and between 85 and 98% respectively; the inhibition of - and -d-glucosidase, - and -d-galactosidase, -d-mannosidase, -d-glucuronidase and -d-N-acetylglucosaminidase by the fixative or coupling reagent does not exceed 70%. Therefore 1- and 2-naphthyl -l-fucoside cannot be recommended in general for histochemical purposes. Small amounts of dimethylformamide do not influence the activity of most of the glycosidases investigated.For biochemical measurements, however, especially 1-naphthyl -l-fucoside represents a suitable alternative in a fluorometric procedure instead of p-nitrophenyl -l-fucoside used for the photometric evaluation of -l-fucosidase. With the fluorometric method the enzyme was measured in rat organs, which posses remarkably different activities of -l-fucosidase.
  相似文献   

18.
Adult snails synthesize in their albumen glands a storage polysaccharide called galactan which is utilized by the developing embryos. With [6-3H]-uridine 5diphosphogalactose the incorporation of labelled d-galactose into the polysaccharide can be traeed in freshly removed glands maintained in a bathing buffer. After centrifugation of homogenized glands, galactosyltrasferase activity is only found in the insoluble fraction. Chaps extracts of this material retain almost all of their activity and can be used for comparison of the incorporation rates into different native galactans or in various oligosaccharides. A highly efficient -(16) galactosyltransferase was detected when methyl 3-O-(-d-galactopyranosyl)--d-galactopyranoside was offered as acceptor. The substitution at the penultimate residue resulted in a branched trisaccharide as demonstrated by 1H-NMR-spectroscopy and permethylation analysis of the reaction product. Comparable results were obtained with various oligosaccharides containing an internal galactose unit glycosidically linked 13. Attempts to separate and purify the various enzymes involved resulted in the isolation of a fraction which is able to transfer d-Gal exclusively to native galactan, but not to oligosaccharides. A further fraction was obtained from a different resin with activity for native galactan and 6-O-(-d-galactopyranosyl)-d-galactopyranose. but without any for methyl-3-O-(-d-galactopyranosyl)--d-galactopyranose. It is thus concluded that at least three different enzymes are involved in the biosynthesis of this snail galactan.Abbreviation Gal galactose - glc gas-liquid chromatography - Gro glycerol - tlc thin layer chromatography  相似文献   

19.
We have studied by high resolutionin situ light and electron microscopic lectin-gold techniques the subcellular distribution of -d-Gal residues using theGriffonia simplicifolia I-B4 isolectin and compared it with that of -d-Gal residues as detected with theDatura stramonium lectin in Ehrlich tumour cells grown as ascites or monolayer. The microvillar but not the smooth plasma membrane regions were labelled with theGriffonia simplicifolia I-B4 isolectin whereas both plasma membrane regions were equally well labelled with theDatura stramonium lectin. Elements of the endocytotic/lysosomal system such as coated membrane invaginations and vesicles, early and late endosomes and secondary lysosomes were positive for both -d-Gal and -d-Gal residues. A particular feature of Ehrlich tumour cells is an elaborate tubular membrane system located in the pericentriolar region which is labelled throughout by both lectins and represents part of the endosomal system. In the Golgi apparatus labelling with both lectins was observed to commence in trans cisternae which is indirect evidence for a joint distribution of the sequentially acting 1,4 and 1,3-galactosyl-transferases.  相似文献   

20.
The properties of the -2-l-fucosyltransferases in submaxillary gland preparations from blood group ABH secrefors and non-secretors were compared. The level of activity in the non-secretor gland homogenates amounted to about 5% only of that found in the secretor gland preparations. The enzymes from the two sources differed in solubility properties, charge and affinities for donor and acceptor substrates. The enzyme from secretor glands showed a preference for acceptors with Type 1 [d-galactosyl(1–3)-N-acetyl-d-glucosamine] structures whereas the enzyme from non-secretor glands had a preference for Type 2 [d-galactosyl(1–4)-N-acetyl-d-glucosamine] structures.These results demonstrate that expression of the secretor gene (Se) is associated with a molecular form of the -2-l-fucosyltransferase that is different from the species present in the same tissue when theSe gene is not expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号