首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By means of scanning electron microscopy surface morphology of cultured normal mouse embryo fibroblasts (MEF) and transformed mouse fibroblasts of L strain was studied in the course of alteration of cell-substrate adhesion with proteases, EDTA and urea. The morphology of cell rounding induced by the above agents in MEF and L cells was almost independent on the type of the agent. The rounding of MEF proceeded through three stages and was accompanied by substantial changes of cell surface relief. L cells lacked the intermediate stage (formation of thick processes) during their rounding which proceeded without any changes of cell surface relief. It is suggested that the observed differences are related to the poorer development of the lamelloplasm and microfilaments bundles in the transformed cells ascompared to the normal ones.  相似文献   

2.
Morphology and distribution of cell-substrate contacts and their association with microfilament bundles in normal and RSV-transformed quail fibroblasts (16Q line) were studied by indirect immunofluorescence. The focal contacts were visualized by antibody exclusion method using monoclonal antibody to 80 kD serum protein adsorbed on the substratum. Embryo quail cells formed focal contacts of two morphological types: (1) small punctate; and (2) elongated large contacts. These two variants of contacts were designated respectively as dot and dash contacts. Both of focal contacts contained vinculin and alpha-actinin. Double immunofluorescence staining with polyclonal antibody to actin and monoclonal antibody to vinculin revealed that the dot contacts, in contrast to the dash ones, were not associated with microfilament bundles. The dot contacts were localized mostly near the active cell edges, while the dash contacts were found near the retracted cell edges and also under the central parts of the cell. We suppose that dot contacts represent initial structures which then can undergo maturation transforming them into dash contacts. RSV-transformed 16Q cells had predominantly the dot contacts which were not only located at the edges but also in the more central parts of the lamella. The dash contacts were present only in the minority of 16Q cells. RSV transformation is assumed to affect not the ability of cells to form initial dot contacts, but the maturation of dot contacts into dash contacts.  相似文献   

3.
Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells.  相似文献   

4.
Rhabdomyosarcomas (RMSs) consist of a mixture of primitive mesenchymal cells as well as cells showing various stages of rhabdomyomatous differentiation. The qualitative and quantitative degree of the rhabdomyomatous differentiation of the cells, evaluated by their morphology and expression of defined structural and functional proteins, is accepted as the basis of diagnosis and is considered to be related to the biological behaviour of RMSs. Therefore we investigated solid experimentally induced murine RMSs, adherent (subconfluent, confluent) cell cultures obtained therefrom, and also suspension cultures and studied the expression of muscular differentiation markers (vimentin, desmin, myoglobin) and the formation of extracellular matrix components (fibronectin, laminin). When we compared solid tumours with adherent cell cultures of decreasing cell densities (confluent up to single cells) and with cells grown in suspension, we found a gradual decline of differentiation ("dedifferentiation"). This decline paralleled the decrease of cell-cell and cell-substrate contacts. In suspension cultures, cells were prevented from interacting with each other and the substratum, no rhabdomyomatous differentiation of the cells took place. If restoration of cellular contacts was allowed, either by adherent growth or by reinoculation into nude mice, the process of dedifferentiation was completely reversible. Consequently, it was demonstrated that the increase of cell-cell and cell-substrate contacts was strongly associated with the appearance or increasing expression of the desmin intermediate filament cytoskeleton and with formation of the extracellular matrix components fibronectin and laminin. The microfilament (F-actin) system was modulated from an impressive stress-fiber system in subconfluent to a dense network in confluent monolayers. The extent of cell-substrate contacts, mediated by extracellular matrix components, and the number of cell-cell interactions are responsible for the capability of a malignant mesenchymal cell, which is able to undergo rhabdomyomatous differentiation, to achieve the various stages of maturation.  相似文献   

5.
We have studied the distribution of cytoskeletal elements in detergent-extracted mouse embryo fibroblasts using the platinum replica technique. It was shown that lamelloplasm can be subdivided into three zones: 1) the ruffle edge with dense microfilament meshwork; 2) the sparse zone adjacent to the ruffle edge and containing relatively few cytoskeletal elements; 3) the lamella proper occupied with a three-dimensional network of microfilaments, microtubules, intermediate filaments; this zone contained adhesion plaques corresponding to cell-substrate focal contacts and associated with the microfilament bundle ends. The cytoskeleton structure of the central (endoplasm) region of the cell was markedly different from that of the lamelloplasm. Its main feature was a dense microfilament sheath at the dorsal cell surface. Sites of microfilament bundle convergence can be visualized near the nucleus after partial removal of the sheath by more complete detergent extraction.  相似文献   

6.
Incubation for 3 min in 1 M sorbitol causes animal cells to lose 50–75% of their water content. Upon return to normal medium, the ultrastructure and morphology of the cells return to normal within 3 min. Mitoses continue normally; migration patterns and growth curves also return to normal. An intriguing aspect of irreversibility was observed when blebbing microplasts switched to ruffling. They would have continued to bleb without the prior episode of dehydration in sorbitol. During incubation with 1 M sorbitol the shrunken cells appear to store excess surface area in numerous, rapidly forming microvilli. The cytoplasm is also altered. Bundles of individual microfilaments and intermediate filaments condense into homogeneous streaks of materials which retain their birefringence. In contrast, microtubules display a clearly visible exclusion zone around each individual tubule. Sharply outlined patches of tiny granules appear in electron micrographs. The results are discussed with respect to the morphological compartmentalization and the viscoelasticity of the cytoplasm.  相似文献   

7.
Apoptosis is a strictly regulated and genetically encoded cell 'suicide' that may be triggered by cytokines, depletion of growth factors or certain chemicals. It is morphologically characterized by severe alterations in cell shape like cell shrinkage and disintegration of cell-cell contacts. We applied a non-invasive electrochemical technique referred to as electric cell-substrate impedance sensing (ECIS) in order to monitor the apoptosis-induced changes in cell shape in an integral and quantitative fashion with a time resolution in the order of minutes. In ECIS the cells are grown directly on the surface of small gold-film electrodes (d = 2 mm). From readings of the electrical impedance of the cell-covered electrode, performed with non-invasive, low amplitude sensing voltages, it is possible to deduce alterations in cell-cell and cell-substrate contacts. To improve the sensitivity of this impedance assay we used endothelial cells derived from cerebral micro-vessels as cellular model systems since these are well known to express electrically tight intercellular junctions. Apoptosis was induced by cycloheximide (CHX) and verified by biochemical and cytological assays. The time course of cell shape changes was followed with unprecedented time resolution by impedance readings at 1 kHz and correlated with biochemical parameters. From impedance readings along a broad frequency range of 1-10(6) Hz we could assign the observed impedance changes to alterations on the subcellular level. We observed that disassembly of barrier-forming tight junctions precedes changes in cell-substrate contacts and correlates strongly with the time course of protease activation.  相似文献   

8.
We have examined the expression, localization, and function of beta 1 integrins on cultured human epidermal keratinocytes using polyclonal and monoclonal antibodies against the beta 1, alpha 2, alpha 3, and alpha 5 integrin subunits. The beta 1 polypeptide, common to all class 1 integrins, was localized primarily in areas of cell-cell contacts of cultured keratinocytes, as were alpha 2 and alpha 3 polypeptides, suggesting a possible role in cell-cell adhesion for these integrin polypeptides. In contrast, the fibronectin receptor alpha 5 subunit showed no such accumulations in regions of cell-cell contact but was more diffusely distributed in the keratinocyte plasma membrane, consistent with the absence of fibronectin at cell-cell contact sites. Colonies of cultured keratinocytes could be dissociated by treatment with monoclonal antibody specific to the beta 1 polypeptide. Such dissociation of cell-cell contacts also occurred under conditions where the monoclonal antibody had no effect on cell-substrate adhesion. Therefore, beta 1 integrin-dependent cell-cell adhesion can be inhibited without affecting other cell-adhesive interactions. Antibody treatment of keratinocytes maintained in either low (0.15 mM) or high (1.2 mM) CaCl2 also resulted in the loss of organization of intracellular F-actin filaments and beta 1 integrins, even when the anti-beta 1 monoclonal antibody had no dissociating effect on keratinocyte colonies at the higher calcium concentration. Our results indicate that beta 1 integrins play roles in the maintenance of cell-cell contacts between keratinocytes and in the organization of intracellular microfilaments. They suggest that in epithelial cells integrins can function in cell-cell interactions as well as in cell-substrate adhesion.  相似文献   

9.
Cultured cells attach to the substratum by means of specialized domains of cell surface, called focal contacts. The inner side of the cell membrane is associated in these structures with cytoskeletal elements, while the outer side is connected with extracellular matrix. The present review describes both light and electron microscopic methods of studying the focal contacts and ultrastructure of adhesion plaque, that is the cytoskeletal domain of focal contact. The proteins of adhesion plaque and focal contact membranes are also characterized. The processes of the formation of focal contacts and their association with the bundles of actin microfilaments in normal cultured fibroblasts are described in detail. Association of focal contacts with other cytoskeletal elements microtubules and intermediate filaments is discussed. The neoplastic transformation induced changes of focal contact system and cytoskeletal structures associated with contact sites are described.  相似文献   

10.
Cyclic AMP (cAMP) elevation causes diverse types of cultured cells to round partially and develop arborized cell processes. Renal glomerular mesangial cells are smooth, muscle-like cells and in culture contain abundant actin microfilament cables that insert into substratum focal contacts. cAMP elevation causes adhesion loss, microfilament cable fragmentation, and shape change in cultured mesangial cells. We investigated the roles of the classical vitronectin (αVβ3 integrin) and fibronectin (α5β1 integrin) receptors in these changes. Mesangial cells on vitronectin-rich substrata contained microfilament cables that terminated in focal contacts that stained with antibodies to vitronectin receptor. cAMP elevation caused loss of focal contact and associated vitronectin receptor. Both fibronectin and its receptor stained in a fibrillary pattern at the cell surface under control conditions but appeared aggregated along the cell processes after cAMP elevation. This suggested that cAMP elevation caused loss of adhesion mediated by vitronectin receptor but not by fibronectin receptor. We plated cells onto fibronectin-coated slides to test the effect of ligand immobilization on the cellular response to cAMP. On fibronectin-coated slides fibronectin receptor was observed in peripheral focal contacts where actin filaments terminated, as seen with vitronectin receptor on vitronectin-coated substrata, and in abundant linear arrays distributed along microfilaments as well. Substratum contacts mediated by fibronectin receptor along the length of actin filaments have been termed fibronexus contacts. After cAMP elevation, microfilaments fragmented and fibronectin receptor disappeared from peripheral focal contacts, but the more central contacts along residual microfilament fragments appeared intact. Also, substratum adhesion was maintained after cAMP elevation on fibronectin—but not on vitronectincoated surfaces. Although other types of extracellular matrix receptors may also be involved, our observations suggest that cAMP regulates adhesion at focal contacts but not at fibronexus-type extracellular matrix contacts. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Epithelial and endothelial cells are susceptible to a subset of apoptosis known as anoikis. This type of programmed cell death is activated upon disruption of cell-substrate contacts. Here we demonstrate that mouse F9 embryonal carcinoma cell line acquires susceptibility to anoikis upon retinoic acid-induced differentiation towards non-malignant pariental endoderm-like cells. F9 cells survival becomes dependent on the substrate by the 4th day of retinoic acid treatment, when cells assume epithelial phenotype as revealed by actin, alpha-actinin and vinculin expression and distribution, and when focal adhesion contacts are formed. Differentiated F9 cells die in suspension by apoptosis as revealed by oligonucleosomal DNA laddering, DAPI staining and DNA flow cytometry analysis. On the contrary, undifferentiated F9 cells form large multicellular aggregates in suspension and survive. Thus, F9 cell line provides a new model to study pathways involved in both anoikis induction and inhibition.  相似文献   

12.
《The Journal of cell biology》1984,99(4):1434-1440
We used isolated cortices from ameboid cells of Dictyostelium discoideum to examine the structural nature of attachments between microfilaments and the cell membrane and to determine the effect of myosin subfragment-1 (S-1) on such contacts. By varying several parameters in our previously described isolation procedure (Condeelis, J., 1979. J. Cell Biol., 80:751-758), we have improved this procedure and have been able to isolate stable cortices. In this paper we identify two types of contact sites between microfilaments and the cell membrane similar to those seen in the brush border of intestinal epithelial cells: (a) an end-on attachment between the barbed end of actin filaments and the cell membrane; and (b) a lateral attachment mediated by rod-shaped bridges measuring approximately 6 X 15 nm. The spacing between bridges averages 36 nm, which suggests that the helical twist of the actin filament influences bridge location. Together these contacts account for an average of approximately 25,000 attachments per cell. Incubation of cortices with concentrations of S-1 sufficient to saturate binding sites on the microfilaments caused disruption of the contacts. This observation was confirmed by quantitative morphometry to show a threefold loss in the number of contact sites following S-1 decoration. These results indicate that S-1 decoration should be used with caution when information about the precise location of microfilaments and their attachment to the membrane is required.  相似文献   

13.
Immunofluorescent labeling for fibronectin was largely excluded from sites of closest contact between spreading chicken gizzard fibroblasts and the substratum. This was observed by double immunofluorescent labeling of fixed cells for fibronectin and vinculin, a smooth muscle intracellular protein that is specifically associated with focal adhesion plaques, in conjunction with interference-reflection microscopy. When the cells were plated on a fibronectin-coated substratum they adhered to its surface and rapidly spread on it. The immunofluorescent labeling for fibronectin in those cultures (after fixation and triton permeabilization) was usually absent from the newly formed, vinculin-containing focal adhesion plaques. We have found, however, that the accessibility to the cell-substrate gap at the focal adhesion plaques is limited and therefore a more direct approach was adopted. We have found that cells spreading on a substrate coated with rhodamine-labeled fibronectin progressively removed the underlying protein from the substrate. The removal of fibronectin involved at least two distinct mechanisms. Part of the substrate-associated fibronectin was removed from small areas and displaced toward the cell center. The arrowhead-shaped areas from which fibronectin was removed often coincided with vinculin-rich focal contacts. We observed, however, many areas where focal contacts were found over unperturbed fibronectin carpet, as well as fibronectin-free areas with no overlapping focal contacts. The possibilities that fibronectin is actively displaced from areas of cell-substrate contact, that the focal adhesion plaques are transiently associated with these areas and their implications on the dynamics of cell spreading and locomotion are discussed. The second route of fibronectin removal from the substrate was endocytosis. The rhodamine-labeled fibronectin was found in the cells in a partial or transient association with clathrin-containing structures.  相似文献   

14.
Late passage fibroblasts show decreased cell-substrate adhesion. We provide evidence that the reduced adhesion is due to a defect in the adhesive glycoprotein fibronectin. Late passage cells become more adhesive in culture media that has been conditioned by the growth of early passage cells. Analysis of fibronectins purified from early and late passage cell conditioned media indicates that there are striking differences in their abilities to promote cell adhesion. Young cell fibronectin supports the maximal adhesion of both young and old cells. However, old cells require quantitatively more fibronectin. In contrast, old cell fibronectin is less effective in supporting the adhesion of either cell type. In addition, neither cell type achieves a normal morphology in the presence of old cell fibronectin. The results support the conclusion that the fibronectin released by late passage cells is defective and does not support normal cell-substrate interactions.  相似文献   

15.
Wei Q  Hariharan V  Huang H 《PloS one》2011,6(10):e27064
Control over cell viability is a fundamental property underlying numerous physiological processes. Cell spreading on a substrate was previously demonstrated to be a major factor in determining the viability of individual cells. In multicellular organisms, cell-cell contact is likely to play a significant role in regulating cell vitality, but its function is easily masked by cell-substrate interactions, thus remains incompletely characterized. In this study, we show that suspended immortalized human keratinocyte sheets with persisting intercellular contacts exhibited significant contraction, junctional actin localization, and reinforcement of cell-cell adhesion strength. Further, cells within these sheets remain viable, in contrast to trypsinized cells suspended without either cell-cell or cell-substrate contact, which underwent apoptosis at high rates. Suppression of plakoglobin weakened cell-cell adhesion in cell sheets and suppressed apoptosis in suspended, trypsinized cells. These results demonstrate that cell-cell contact may be a fundamental control mechanism governing cell viability and that the junctional protein plakoglobin is a key regulator of this process. Given the near-ubiquity of plakoglobin in multicellular organisms, these findings could have significant implications for understanding cell adhesion, modeling disease progression, developing therapeutics and improving the viability of tissue engineering protocols.  相似文献   

16.
It was suggested recently that gastrulation movements in amphibian embryos are caused by the active cell locomotion of individual cells. In order to elucidate the role of microfilaments and microtubules in the cell locomotion occurring during gastrulation, cytochalasin B, colchicine, and other microtubule-disrupting drugs were injected into the blastocoel of early gastrulae of Xenopus laevis. Hypertonic solutions of sorbitol were also injected to elucidate the influence of the internal hydrostatic pressure on the migrating cells. The effects were examined in 1-μm Epon sections of serially fixed embryos and by transmission electron microscopy. Cytochalasin B strongly inhibits cell migration even under conditions that do not cause dissociation into single cells. The cells become round, and have only a few thin cell processes. Electron microscopy shows an alteration in the cortical microfilament network. Colchicine and other microtubule-disrupting drugs have little effect on the rate of cell migration before they cause the accumulation of many mitotic cells and the dissociation of the embryo. The interphase cells are angular and have thin processes like those in the control embryos. The microtubules disappear, and bundles of 10-nm filaments are observed in the cytoplasm of colchicine-injected embryos. Hypertonic sorbitol solutions strongly inhibit cell migration.  相似文献   

17.
Transformation of cultured chick lens epithelial cells with a temperature-sensitive mutant of Rous sarcoma virus (tsRSV) leads to radical changes in cell shape and interactions. When cultured at the restrictive temperature (42 degrees C), the transformed cells largely retained epithelial morphology and intercellular adherens junctions (AJ), whereas on switch to the permissive temperature (37 degrees C) they rapidly became fibroblastoid, their AJ deteriorated, and cell adhesion molecules (A-CAM) (N-cadherin) largely disappeared from intercellular contact sites. The microfilament system that was primarily associated with these junctions was markedly rearranged on shift to 37 degrees C and remained associated mainly with cell-substrate focal contacts. These apparent changes in intercellular AJ were not accompanied by significant alterations in the cellular content of several junction-associated molecules, including A-CAM, vinculin, and talin. Immunolabeling with phosphotyrosine-specific antibodies indicated that both cell-substrate and intercellular AJ were the major cellular targets for the pp60v-src tyrosine-specific protein kinase. It was further shown that intercellular AJ components serve as substrates to tyrosine kinases also in nontransformed lens cells, because the addition of a combination of vanadate and H2O2--which are potent inhibitors of protein tyrosine phosphatases--leads to a remarkable accumulation of immunoreactive phosphotyrosine-containing proteins in these junctions. This finding suggests that intercellular junctions are major sites of action of protein tyrosine kinases and that protein tyrosine phosphatases play a major role in the regulation of phosphotyrosine levels in AJ of both normal and RSV-transformed cells.  相似文献   

18.
I have examined the distribution of neural cell adhesion molecule (N-CAM) in cultured C2 myogenic cells and other cell lines to determine if N-CAM accumulates at sites of cell-cell contact. C2 cells growing in log phase display large clusters of neural cell adhesion molecule where they contact each other. These clusters are remarkably stable, do not form at cell-substrate contacts, and appear not to be enriched in a number of other cytoskeletal, membrane, or extracellular proteins. Thus, N-CAM clusters form preferentially in response to cell-cell contact and are specifically enriched in N-CAM. As C2 cultures mature and differentiate, clusters persist at contacts between aligning myoblasts and between myotubes, consistent with a role in myogenesis. N-CAM is also enriched at cell-cell contacts in cultures of PC12, NRK, and CHO cells. These cells have significant amounts of N-CAM as detected on immunoblots. Clusters are not seen in L929 cells, which do not have detectable amounts of N-CAM. Coculture of these cells with C2 cells results in the clustering of N-CAM at heterologous contacts between C2 cells and NRK, CHO, or PC12 cells, but not between C2 cells and L929 cells. These results suggest that N-CAM specifically accumulates where N-CAM-bearing cells contact one another. Clustering of N-CAM may be an important step in strengthening intercellular adhesion.  相似文献   

19.
This study shows that artificial increase in cell site leads to morphological normalization of transformed fibroblasts. Mouse L cells (clone 171/5) were used. As most transformed cells, they were poorly spread on the substratum, made only dot-like focal contacts with it, rounded quickly at room temperature and did not contain prominent actin cables. Giant cells were obtained by incubation of these cells in the medium supplemented with mitomycin C (0.15-0.20 mcg/ml). DNA synthesis and mitosis were blocked by this treatment, while protein synthesis was changing very slightly. As a consequence, the cell size increased dramatically from 3 to 11 days of the cell incubation in the mitomycin containing medium. The degree of cell spreading per mcg of protein increased significantly in the giant cells. These cells do not round after moderate cooling, and well developed system of actin cables and matured streak-like focal contacts associated with these cables are formed in them. These results, along with our previous data on the restoration of cell spreading and cytoskeleton structure in giant multinucleated cells, provide strong evidences that the increase in cell size per se can induce qualitative changes in cell morphology. It can be suggested that there are some scaling-dependent factors regulating the processes of cytoskeleton assembly and formation of cell-substrate contacts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号