首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of prostaglandin (PG) D2 contracted helical strips of dog cerebral, coronary, renal and femoral arteries; the contraction was greatest in cerebral arteries. The contractile response of cerebral arteries was potentiated by aspirin and attenuated by polyphloretin phosphate. In the arterial strips contracted with PGF, PGD2 elicited a concetration-related relaxation; the relaxation was greatest in mesenteric arteries. In mesenteric arterial strips contracted with norepinephrine, a lesser degree of relaxation was induced, and in the K+-contracted arteries, only a contraction was induced. Treatment with PGD2 attenuated the contractile responses of cerebral and mesentric arteries to PGF or PGE2; this inhibitory effect was approximately 10 times greater in mesenteric arteries. However, the response to serotonin (for cerebral arteries) or norepinephrine (for mesenteric) was unaffected. It may be concluded that the heterogeneity of response to PGD2 of a variety of dog arteries is due to different contributions of vasoconstrictor and vasodilator mechanisms. PGD2 appears top share the mechanism underlying arterial contraction with PGF and PGE2, and interferes with the effect of these PG's possibly on receptor sites.  相似文献   

2.
The effects of prostacyclin (PGI2) and its stable metabolite 6-oxo-PGF on various bioassay tissues are compared with those of PGE2 and PGF, using the cascade superfusion method. On vascular smooth muscle, PGI2 caused relaxation of all tissues tested except the rabbit aorta. PGE2 relaxed rabbit coeliac and mesenteric artery but contracted bovine coronary artery and had no effect on rabbit aorta. 6-oxo-PGF was ineffective at the concentrations tested.On gastro-intestinal smooth muscle, PGI2 contracted strips of rat and hamster stomach and the chick rectum. It was less potent than PGE2 or PGF. None of these substances contracted that cat terminal ileum. 6-oxo-PGF was inactive on these tissues at the doses tested.PGI2 was less active than PGE2 or PGF in contracting guinea-pig trachea and rat uterus; 6-oxo-PGF was active only on the rat uterus. Thus, PGI2 can be distinguished from the other stable prostaglandins using the cascade method of superfusion.  相似文献   

3.
Effects of prostaglandins (PGs) E1, E2, F and I2 in a wide range of concentration were examined in mesenteric and cerebral arteries isolated from mature baboons. PGs E1, E2 and F at low concentrations (10−10 to 10−7 M) elicited relaxation in helically cut strips of cerebral arteries precontracted with phenylephrine. In contrast, the PGs did not cause relaxation in the mesentric artery. PGI2 (10−9 to 10−6 M) produced marked relaxation in both arteries. The EC25 for PGI2 in the mesenteric artery was significantly lower than that in the cerebral artery. During baseline conditions, cerebral arteries contracted in response to high concentrations (greater than 10−7 M) of PGs E1, E2 and F. In mesentric arteries, a large contraction was induced by PGs F and E2 but not by PGE1. Arachidonic acid (10−6 M) produced an aspirin-inhibitable relaxation in both arteries to a similar extent, so that the vasodilator PG(s) formed in the two different arterial walls appear to exert a similar relaxant action. Thus, the baboon mesenteric artery was more sensitive to PGI2 for the relaxant effect than was the cerebral artery, while PGs F, E1 and E2 caused only a contraction in the mesenteric artery but both relaxation and contraction in the cerebral artery.  相似文献   

4.
Prostacyclin (PGI2) produced a biphasic response in canine isolated basilar arteries. In low doses (1 × 10?8M?1 × 10?7M) PGI2 caused a slight but consistent relaxation of resting muscle tone. In low concentrations (1 × 10?8M?1 × 10?6M) PGI2 antagonized muscle contractions caused by serotonin or prostaglandin (PG) F. This relaxant effect with low doses of PGI2 on the isolated cerebral artery contrasts with findings obtained with other PGs and supports the hypothesis that PGI2 is a mediator of vasodilatation. However, in 1 × 10?5M concentrations PGI2 contracted the arterial muscle and did not antagonize contractions induced by serotonin or PGF.  相似文献   

5.
Prostaglandins (PG)I2, PGE2 and 6-keto PGF1α were infused directly into the gastric arterial supply at 10−9, 10−8 and 10−7 g/kg/min during an intra-gastric artery pentagastrin infusion in anesthetized dogs. 6-keto PGF1α was also infused at 10−6 g/kg/min. Gastric arterial blood flow was measured continuously with a non-cannulating electromagnetic flow probe and gastric acid collected directly from the stomach. PGI2 and PGE2 produced similar dose-dependent increases in blood flow with an increase of more than four-fold at the highest dose. Both PGs inhibited acid output over this dose range with PGE2 having 10 times the potency of PGI2. 6-keto PGF1α was at least 1000 times less active than PGI2 or PGE2 at increasing blood flow and failed to inhibit acid output even at 10−6 g/kg/min.  相似文献   

6.
Specimensfrom the ascending branch of the human uterine artery were obtained from 35 nonpregnant fertile women undergoing hysterectomy, The specimens were cut either longitudinally or helically and mounted in organ chambers for isometric recording of the contractile activity. Spontaneous phasis activity occured in 30% of the specimens.Both PGE2 and PGF caused an increase in basal tonus of the strips while PGI2 relaxed spontaneously active as well as PG- and norepinephrine (NE)-stimulated preparations. PGI2 had no effect on nonactive specimens. NE and transmural nerve stimulation (TNS) induced contractile activity that could be blocked by phenoxybenzamine. PGI2 counteracted the NE-induced response but not that of TNS. It is concluded that PGI2, which is synthesized both within the vessel wall and the myometrium, has a potent relaxing effect on uterine arteries and that the compound may balance the effect of vasocontricting substances.  相似文献   

7.
The in vivo metabolism of 6-keto PGF was investigated in rats. Following continuous intravenous infusion for 14 days the urinary metabolites were isolated and identified. A substantial amount of unchanged 6-keto PGF was recovered in the urine. The metabolic pattern very closely resembles that of PGI2 in rats. Metabolites were found which represented 15-dehydrogenation, β-oxidation, ω and ω-1-hydroxylation and oxidation.Previous work showed that 6-keto PGF is very poorly oxidized by 15-PGDH. We administered 15-[H3]-PGI2 and 15-[H3]-6-keto PGF to rats and measured urinary tritiated water as an index for in vivo 15-PGDH activity. The results showed that PGI2 and 6-keto PGF were both oxidized to the 15-keto product, although the rate of oxidation of PGI2 was greater than that of 6-keto PGF. We concluded that the administered PGI2 was oxidized by 15-PGDH before hydrolysis to 6-keto PGF. A portion of the dose is probably hydrolyzed before 15-dehydrogenation.  相似文献   

8.
The relationship between renin secretion and PGI2 production, in response to intrarenal infusion of norepinephrine, was examined in the isolated perfused rat kidney. Infusion of norepinephrine in a dose which caused substantial vasoconstriction (100 ng/min), markedly increased urinary excretion of 6-keto PGF1α, the stable derivative of PGI2, without significantly altering renin secretion measured in the effluent perfusate. No change in urinary 6-keto PGF1α occurred when vasoconstriction was prevented by infusing the alpha-adrenoceptor blocking drug phenoxybenzamine (2 × 103 ng/min) alongside norepinephrine 100 ng/min). However, under these conditions there was marked stimulation of renin secretion which, as has been demonstrated previously, is mediated by a beta-adrenoceptor. There were significant increase in urine flow rates during both vasoconstrictor and non-vasoconstrictor infusions. These findings clearly indicate that in the rat kidney prostacyclin production and renin release in response to norepinephrine are dissociated.  相似文献   

9.
The thromboxane receptor antagonist EP 092 inhibits the acute pulmonary vascular response to endotoxin in the anaesthetized, closed-chest sheep. The increase in the TXB2 level in arterial blood was not suppressed by EP 092. Intravenous infusion of the thromboxane mimetic 11,9-epoxymethano PGH2, but not PGF, raises pulmonary artery pressure and lowers arterial pO2 similar to the endotoxin. Isolated strips of lobar pulmonary veins but not lobar arteries are contracted by low concentrations of 11,9-epoxymethano PGH2 - the effects are potently inhibited by EP 092.  相似文献   

10.
Summary The current study was undertaken to assess species and regional variations in the relaxation of vascular smooth muscle in response to potassium and in the ouabain sensitivity of this relaxation. The effect of species variation was investigated through the use of tail arteries from rats, dogs, cats, monkeys, and pigs; the effect of regional variation was studied in tail, middle cerebral, femoral, and posterior coronary arteries from baboons. Helical strips from all of these vessels were made to contract with norepinephrine or serotonin in a potassium-free solution. The vessels relaxed when potassium was added back to the solution. Strips of tail artery from rats, dogs, and monkeys showed greater relaxation in response to potassium than did strips from pigs and cats. Helical strips from tail, cerebral, and coronary arteries of the baboon relaxed to a greater degree in response to potassium than did strips from the femoral artery. Ouabain produced a concentration-dependent decrease in the magnitude of potassium relaxation in all vessel types. Half-maximal inhibition occurred at approximately 10–8 to 10–7 M in all arterial strips except those obtained from rat tail artery (5×10–5 M). The inhibition of potassium relaxation by ouabain was fully reversed by 30 min exposure to a ouabain-free solution in only the rat tail artery strips. A component of potassium-induced relaxation in tail artery strips from monkeys and baboons was not inhibited by ouabain. The results show that the magnitude of response, potassium and ouabain sensitivity, and recovery from ouabain treatment of potassium relaxation are species related. The regional bed from which the vascular smooth muscle is derived also determines the magnitude and potassium sensitivity of the relaxation. These parameters of potassium-dependent relaxation may reflect corresponding differences in the electrogenic pumping of sodium and potassium among various animal species and various regional vascular beds.Abbreviations ATPase adenosine triphosphatase - PSS physiological salt solution - C contractile magnitude from baseline in milligrams - R relaxation measured as residual force above baseline in milligrams - SEM standard error of the mean These studies were supported by NHLBI grant HL-18575Dr. Webb was a Post-doctoral Research Fellow of the Michigan Heart Association during this investigation  相似文献   

11.
Intact rings and homogenates of aorta from spontaneously hypertensive rats (SHR) contain enhanced capacity over normal rats (NR) to convert arachidonic acid into PGI2. The PGI2 synthetic system in SHR is stimulated to a greater extent than NR by norepinephrine. Indomethacin blocks this stimulation. PGE2 and PGF were detected in much smaller amounts in homogenates (undetected in rings) but their formation was not enhanced by the hypertensive tissue. The identity of PGI2 was based on 1) direct pharmacological assay on the rat blood pressure. In this system identical vasodepressor responses to PGI2 are observed after intracarotid and intrajugular administration 2) indirectly as 6-keto PGF isolated after incubation of aortic homogenates with tritiated arachidonic acid and 3) indirectly by GC-MS assay of PGE2, PGF and 6-keto PGF formed during incubation of aortic homogenates with excess unlabeled arachidonic acid. These results provide additional support to our recent hypothesis that PGI2, of aortic origin, might actively participate in the regulation of systemic blood pressure. Its enhanced formation by intact hypertensive vascular tissue reflects an increase in the number of enzyme molecules immediately available to the substrate. This could probably be an adaptive response to the elevated levels of catecholamines in the circulation.  相似文献   

12.
Prostacyclin (PGI2) dose-dependently increases the adenosine 3′,5′-cyclic monophosphate (cyclic AMP) levels in canine femoral, carotid, and canine and bovine coronary arteries. The prostacyclin-stimulation is enhanced by phosphodiesterase inhibitors, and is readily measurable after 60 sec incubation. The prostaglandin endoperoxide PGH2, but not PGH1, also elevates cAMP levels in femoral arteries. Inhibition of arterial prostacyclin synthetase with 28 μM 9,11-azoprosta-5,13-dienoic acid (azo analog I) blocks the PGH2-stimulation of cAMP accumulation. Azo analog I does not attenuate a direct PGI2 stimulation, indicating that the PGH2 dependent elevation of cAMP is due to conversion of PGH2 to PGI2 by the artery. PGI2 and PGE1 increase cyclic AMP levels and relax dog femoral and bovine coronary arteries, while PGE2, which actually contracts bovine coronary arteries, has no effect on arterial cyclic AMP levels. The significance of the PGI2-stimulation of arterial cyclic AMP is not known, but it is probably related to relaxation of arterial strips.  相似文献   

13.
Endothelial cells synthesize and release nitric oxide (NO) and prostacyclin (PGI2) which are involved in the regulation o f vascular tone and blood pressure. Our objective was to evaluate the effects of inhibiting NO synthesis on vascular prostaglandin (PG) and cyclic nucleotide production, as well as the pressor response to norepinephrine (NE). Isolated mesenteric arterial beds were perfused with Krebs-Henseleit solution containing 100 μM NG-monomethyl-L-arginine (L-NMMA), 100 μM L-arginine (LA), or vehicle. After a 30 min equilibration 0.1, 0.5, 1, or 5 μM NE was infused into the superior mesenteric artery and the perfusion pressure was monitored. The basal perfusion pressure did not differ significantly between groups. The pressure-response curve was shifted to the right in the L-NMMA group vs. the LA and control groups. Perfusion was similarly performed with a Krebs-Henseleit solution containing 100 μM L-NMMA, LA, D-arginine, or vehicle. Perfusates were collected before and after NE infusion for the measurement of PGE2, 6-keto-PGF, TxB2, cAMP, and cGMP. In the L-NMMA group the release of PGE2 and 6-keto-PGF1α was decreased, and the release of cGMP was prevented. Production of cAMP did not differ between the four groups before NE infusion, and NE increased cAMP release in the L-NMMA group and controls. The results indicate that inhibition of NO synthesis by L-NMMA enhanced the pressor response to NE, possibly mediated by the decreased cGMP and PGI2 production in resistance vessels.  相似文献   

14.
In patients with peripheral vascular disease and in healthy rabbits, infusion of PGI2 but not of 6-keto PGF induced a rise in blood glucose level and a pathological deviation in glucose tolerance test. In experiments , the increased concentrations of glucose produced dose-dependent inhibition of PGI2 release from isolated rat aortic rings. The link between PGI2 and carbohydrate metabolism is discussed.  相似文献   

15.
Small strips from the circular and longitudinal muscle layers of the ampullary-isthmic portion of the human oviduct were mounted in organ chambers for recording of their spontaneous contractility. Concentrations in the order of 1–300 ng/ml of PGI2 were tested and compared with similar concentrations of PGE2 and PGF. It was found that PGI2 contracted the longitudinal muscle layer in the same manner as did PGE2. The spontaneous activity of the circular layer was markedly suppressed by PGE2 but only moderately inhibited by PGI2 even at high concentrations.  相似文献   

16.
The spontaneous output of prostaglandin (PG) I2 from the perfused mesenteric arterial bed in vitro was significantly higher in hypertensive rats than in normotensive rats. Sympathetic nerve stimulation (at 10Hz) of the mesenteric arterial bed from normotensive rats caused a rapid and short-lived (< 4 min) two-fold increase in PGI2 output and a smaller increase in PGE2 output. Sympathetic nerve stimulation (at 10Hz) of the mesenteric arterial bed from hypertensive rats failed to increase PGI2 and PGE2 output. It is not possible to conclude whether this lack of response is a cause or a result of hypertension. Surprisingly, norepinephrine administration stimulated PGI2 and PGE2 release from the mesenteric arterial bed of both normotensive and hypertensive rats. Obviously, differences exist in the responsiveness of rat mesenteric arteries to endogenous and exogenous norepinephrine concerning PG release between the normotensive and hypertensive states.  相似文献   

17.
Histamine caused a triphasic response of human pulmonary artery strips in vitro, consisting of a small initial contraction followed by pronounced relaxation preceding a second contractile response. These characteristics were not seen with other contractile stimuli including 5-hdyroxytryptamine, leukotriene D4, and KC1. The relaxant component of this response was ablated by removal of endothelium from the vascular strips or by pretreatment of the tissues with 1μM indomethacin. Measurement of the PGI2 degradation product 6-keto-PGF in supernatants from histamine-challenged tissues confirmed the synthesis of PGI2. Supernatants from unstimulated or leukotriene-challenged tissues contained no detectable amounts of 6-keto-PGF. The histamine H1 antagonist diphenhydramine inhibited both the contractile and relaxant responses to histamine whereas the H2 antagonist cimetidine affected neither component. The released PGI2 significantly altered the dose-respons curve to histamine without inhibiting the maximal contractile responses. We conclude that histamine induces PGI2 formation from pulmonary arterial endothelium via an H1 receptor.  相似文献   

18.

Uridine 5′-triphosphate (UTP) has an important role as an extracellular signaling molecule that regulates inflammation, angiogenesis, and vascular tone. While chronic hypertension has been shown to promote alterations in arterial vascular tone regulation, carotid artery responses to UTP under hypertensive conditions have remained unclear. The present study investigated carotid artery responses to UTP in spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats (WKY). Accordingly, our results found that although UTP promotes concentration-dependent relaxation in isolated carotid artery segments from both SHR and WKY after pretreatment with phenylephrine, SHR exhibited significantly lower arterial relaxation responses compared with WKY. Moreover, UTP-induced relaxation was substantially reduced by endothelial denudation and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine in both SHR and WKY. The difference in UTP-induced relaxation between both groups was abolished by the selective P2Y2 receptor antagonist AR-C118925XX and the cyclooxygenase (COX) inhibitor indomethacin but not by the thromboxane-prostanoid receptor antagonist SQ29548. Furthermore, we detected the release of PGE2, PGF, and PGI2 in the carotid arteries of SHR and WKY, both at baseline and in response to UTP. UTP administration also increased TXA2 levels in WKY but not SHR. Overall, our results suggest that UTP-induced relaxation in carotid arteries is impaired in SHR perhaps due to impaired P2Y2 receptor signaling, reductions in endothelial NO, and increases in the levels of COX-derived vasoconstrictor prostanoids.

  相似文献   

19.
Experiments with anesthetized cats were done to study possible roles of different prostaglandins (PGs) in modulating sympathetic neuroeffector transmission. We recorded contractions of the nictitating membrane (n.m.), blood flow in the carotid artery, heart rate and blood pressure, both under control conditions and while stimulating the cut cervical sympathetic nerve. Intra-carotid arterial injection (i.a.) of PGD2 depressed sympathetic transmission to the n.m. without depressing the effects of exogenous norepinephrine (NE). In contrast, PGE2 enhanced the effects of nerve transmission or exogenous NE on the stimulated n.m. PGI2 had similar but shorter effects to PGE2. PGF or a stable PGH2 analog, contracted the n.m. smooth muscle with no detected effect on nerve transmission. Carotid blood flow was increased by PGD2, PGE2 and PGI2. PGD2 and PGI2 caused bradycardia that could be blocked by atropine. This ability of PGD2 to modulate autonomic nerve activity is of particular interest because of recent reports that nerve tissue synthesizes PGD2.  相似文献   

20.
While no significant effects on the in vitro production of PGF2α by homogenates of rat estrous uteri were observed in the presence of 10−3 and 10−6M Cu2+, the presence of Cu2+ at 10−4 and 10−5M was found to stimulate production with maximal synthesis of PGF2α occurring with 10−4M Cu2+. By contrast, the synthesis of PGE2 and PGI2 (determined as 6-keto PGF1α) were unaffected at all of the different Cu2+ concentrations used. When indomethacin and salicylic acid were tested for their effects on the Cu2+-mediated levels of PG synthesis by the homogenates, indomethacin (at 20μM) was found to cause similar pronounced decreases in PGF2α, PGE2 and 6-keto PGF1α whereas salicylic acid (400μM) showed preference towards suppressing PGE2 and 6-keto PGF1α production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号