首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of noncanonical mercury resistance transposons, Tn5044 and Tn5070 , was examined. A characteristic feature of Tn5044 is temperature sensitivity of its mercury operon and the presence in the mer operon of the gene homologous to RNA polymerase subunit. Structural organization of mercury operon Tn5070 , containing minimum gene set (merRTPA), differs from mer operons of both Gram-negative and Gram-positive bacteria. None of more than two thousand environmental bacterial strains displaying mercury resistance and isolated from the samples selected from different geographical regions hybridized to Tn5044- and Tn5070-specific probes. A concept on the existence of cosmopolite, endemic, and rare transposons in environmental bacterial populations was formulated.Translated from Genetika, Vol. 40, No. 12, 2004, pp. 1717–1721.Original Russian Text Copyright © 2004 by Gorlenko, Kalyaeva, Bass, Petrova, Mindlin.  相似文献   

2.
M P Gilbert  A O Summers 《Plasmid》1988,20(2):127-136
The mercury resistance (mer) operons of the Gram-negative bacterial transposons, Tn21 and Tn501, are phenotypically indistinguishable and have extensive DNA identity. However, Tn21 mer has an additional coding region (merC) in the middle of the operon which is lacking in Tn501 and there is also a discrete region of the mercuric ion reductase gene (merA) which differs markedly between the two operons. DNA fragment probes were used to determine the distribution of specific mer coding regions in two distinct collections of mercury-resistant (Hgr) Gram-negative bacteria. Colony blot hybridization analysis showed that merC-positive operons occur almost exclusively in Escherichia, although merC-negative operons can also be found in this genus. The merC-negative operons were found in Citrobacter, Klebsiella, and Enterobacter and in some Pseudomonas. Most of the Pseudomonas did not hybridize detectably with either of the two operons studied, indicating that they harbor an unrelated or more distantly related class of mercury resistance locus. Southern hybridization patterns demonstrated that the merC-positive mer operon is well conserved at the DNA level, whereas the merC-negative operons are much less conserved. The presence of merC also correlated with conservation of a specific variant region of the merA gene and with an antibiotic resistance pattern similar to that of Tn21. Tn501 appears to be an atypical example of the merC-negative subgroup of Hgr loci.  相似文献   

3.
4.
The possibility of translocation of the transposons Tn5 and Tn10 into the genome of Yersinia pestis, with the subsequent mutagenic effect was demonstrated. We revealed transposon harbouring clones at frequency 10(-4) to 10(-2). Derivatives of P1cml clr100ts phage served as vectors. Insertion of Tn10 transposon induced mutations in ilv, ser, arg, pur, pro, leu, nic, tyr, gua genes. The number of the insertion sites on the chromosome obtained for Tn5 was the same, these being arg, ade, pyr, leu, gua, trp, his, pan, ilv. The majority of auxotrophs did not revert. Occasionally, revertants were observed at frequencies 10(-8) to 10(-6). Unlike Escherichia coli, reversion was not accompanied by the loss of transposons. The rearrangements induced by transposons, presumably, near the insertion site, as well as duplications of transposons followed by incorporation of copies into novel sites, led to the appearance of additional defective genes, which made it possible to select various types of polyauxotrophs. Based on reiteration of coinciding double and triple mutant markers, we proposed a linkage group of genes within a segment of Y. pestis chromosome: lys ... tyr - ser - arg - ilv - leu - gua - ade(pur) - pro ... his ... pyr ... trp. The reasons for peculiarities of the behaviour of transposons in Y. pestis bacteria are discussed.  相似文献   

5.
Two types of compound transposons were derived. In the first case, transposon Tn5 is inserted into the gene responsible for Tn1000 transposase synthesis. In the other, Tn5 is inserted into the region near the left end of Tn1000, where no functionally significant genes were found. It is known that translocation of the compound transposons does not depend on their size and takes place with the efficiency close to that characteristic of the intact Tn1000. Insertion of Tn5 into the gene coding for Tn1000 transposase results in sharp decrease in the efficiency of Tn1000 translocations. This effect, however, may be eliminated by introduction into the cell of the intact Tn1000.  相似文献   

6.
7.
This paper reports the cleavage maps of ampicillin transposons Tn2601 and Tn2602, for restriction endonucleases BamHI, PvuII, AvaI, HincII, and HaeII. Both of the transposons are very similar to the well-known ampicillin transposon Tn3 in size, endonuclease cleavage sites, and possession of a short inverted repeat sequence at both ends. A slight difference in the cleavage pattern among these three transposons was observed in the region around the BamHI site which was assumed to be a part of the repressor gene for transposition.  相似文献   

8.
《Molecular cell》2023,83(12):2122-2136.e10
  1. Download : Download high-res image (232KB)
  2. Download : Download full-size image
  相似文献   

9.
HFETn5, HFETn9 and LFETn9 mutants of Escherichia coli K-12 have been isolated. The frequency of Tn5 precise excision from the chromosomal lac operon is increased 3-660-fold in nine HFETn5 mutants. The majority of these mutations have no influence on the efficiency of precise excision of transposon Tn9, though hfeTn5-04 and hfeTn5-06 mutations decrease excision efficiency 2-13-fold. The Tn9 transposon is excised in HFETn9 mutant about 20-fold more efficiently than in the wild type strain. This mutation does not stimulate excision of Tn5 and Tn10. LfeTn9 mutation decreases excision frequency of Tn9 11-17-fold, but has no effect on Tn5 excision and increases that of Tn10 about 20-fold. The differences in genetic control and mechanisms of excision of the transposons with long and short inverted repeats are discussed.  相似文献   

10.
11.
The bacterial transposon Tn10 has previously been shown to move to other genomic sites by a conservative mechanism, whereby the transposon is excised by double-strand breaks and inserted between a pair of staggered nicks at the target. Other transposons, like Tn3, have been shown to transpose by a replicative mechanism that involves symmetrical nicking of the element and formation of the 'Shapiro intermediate', which can mature into either a cointegrate or a simple insert. The situation with respect to Tn5 is unclear; it was originally reported to use a conservative mechanism, but other evidence suggests that the mechanism might be replicative. In this paper, rearrangements of adjacent DNA promoted by Tn10 and Tn5 have been compared using positive selection for galactose-resistance to detect such rearrangements. Tn10 promoted the formation of adjacent deletions (that started from an inside end of Tn10), deletion/inversions and simple IS10 insertions, but no cointegrates. This behaviour is fully consistent with a conservative mechanism. In contrast, Tn5 was found to promote formation of adjacent deletions (that started mainly from an outside end of Tn5), IS50 insertions (that were frequently accompanied by inversions of adjacent DNA) and cointegrates. These characteristics seem compatible with a replicative, rather than a conservative, mode of transposition. Clearly, Tn5 and Tn10 exhibit some significant differences in their transposition. These results, and results of some previous experiments, have been interpreted to mean that Tn5 could use a replicative mechanism for its transposition.  相似文献   

12.
The level and range transposition of the transposons Tn6-1, Tn6-2, Tn19-1, and their ability to influence plasmid transfer has been studied. The widest range of transposition was shown for transposon Tn6-2. Insertions of each of the studied transposons into different conjugative plasmids genomes resulted in change of frequencies of plasmids transfer and change of plasmids mobilization activity.  相似文献   

13.
14.
The persistence of Enterococcus faecalis, fecal enterococci from swine waste, and Tn916-like elements was determined following inoculation into autoclaved and native soil microcosms. When cells of E. faecalis CG110 (Tn916) were inoculated into native microcosms, enterococcal viability in the soil decreased approximately 5 orders of magnitude (4.8 x 10(5) CFU/g soil to < 10 CFU/g) after 5 weeks. In autoclaved microcosms, the viability of E. faecalis decreased by only 20% in 5 weeks. In contrast, the content of Tn916, based on PCR of DNA extracts from soil microcosms, decreased by about 20% in both native and autoclaved microcosms. Similar results were obtained when the source of fecal enterococci and Tn916-like elements was swine waste. Because the concentration of Tn916-independent E. faecalis DNA (the D-alanine D-alanine ligase gene), based on PCR, decreased to nearly undetectable levels (at least 3 orders of magnitude) after 5 weeks in the native microcosms, the evidence suggests Tn916 stability in the soil results from en masse transfer of the transposon to the normal soil microflora and not survival of E. faecalis DNA in the soil system. Results from denaturing gradient gel electrophoresis suggest that multiple forms of Tn916 occur in swine waste, but only forms most like Tn916 exhibit stability in the soil.  相似文献   

15.
The recombinant plasmids pJIR45 and pJIR97 contain the chloramphenicol resistance determinants derived from the Clostridium perfringens R plasmids pIP401 and pJIR27, respectively. Escherichia coli cultures which harbored these recombinant plasmids rapidly became chloramphenicol sensitive when grown in the absence of chloramphenicol. The loss of resistance was associated with the loss of 6.2-kilobase (kb) segments from both plasmids. Detailed restriction analysis of E. coli- and C. perfringens-derived deletion plasmids indicated that deletion of these segments was essentially precise. Transposition of the 6.2-kb segments was demonstrated by cloning the determinants into a temperature-sensitive plasmid, curing the recombinant plasmids, and selecting chloramphenicol-resistant, plasmid-free clones. Southern hybridization analysis of chromosomal DNA isolated from these recA E. coli clones indicated that the 6.2-kb segments had transposed to different sites on the chromosome. Heteroduplex analysis and restriction mapping indicated that the transposons, Tn4451 (pIP401) and Tn4452 (pJIR27), were closely related and did not contain large inverted or directly repeated sequences. These transposons represent the first transposable elements from the clostridia to be identified and characterized.  相似文献   

16.
The properties of Escherichia coli K-12 mutans HFETn5, HFETn9 and LFETn9 have been studied. The majority of mutations were shown to have pleiotropic effect. Some of them increase cell sensitivity to UV light and mitomycin C and affect efficiency of homologous recombination in transduction and conjugation. The level of spontaneous mutagenesis is increased in a number of mutants. None of the mutations isolated affect frequency of transposition of Tn5 from bacteriophage lambda::Tn5 into the chromosome. Based on analysis of properties of hfeTn5-09 and hfeTn9 mutations and on the date of preliminary mapping of hfeTn5-09 mutation, these mutations were considered to be novel. It is shown that the processes of precise excision of Tn5 and Tn9 transposons may be accomplished by at least two pathways, one of them being dependent on recA gene functions.  相似文献   

17.
Two transposable elements, Tn2410 and Tn2411, were isolated from Salmonella typhimurium R-factor R1767. They have sizes of 18.5 and 18.0 kilobases, respectively. Tn2411 mediates resistance to streptomycin, sulfonamides, and mercury. In Tn2410, the streptomycin resistance gene was replaced by a gene coding for the production of the beta-lactamase OXA-2, which is responsible for ampicillin resistance. Physical and functional maps of both transposons were compared with those of Tn21, Tn4, and Tn2603. From these data it appeared that Tn21 could be an ancestral transposon from which Tn2411, Tn2410, Tn2603, and Tn4 were evolved by the addition or deletion of small DNA segments.  相似文献   

18.
The number of exconjugants having the transposon Tn5 excised precisely during the crosses of the Escherichia coli proA::Tn5 donor with the recipients F- rec+ or F- recA441 (tif) was 20-30 times higher for the crosses involving the latter recipient. The high recombinogenic activity is characteristic of the tif recipient. Precise excision from a tandem duplication is more efficient than from nonduplicated region of the genome. It is four orders higher, if a transposon is localized in an arm of a duplication. The effect is recA-dependent. The presented data permit us to suggest the participation of RecA protein (its synaptic function) in the formation of the intermediate "stem-loop" structure. The latter is predicted by the three mechanisms of transposon excision: "slippage", "correctional" and "recombinational". The latter two mechanisms were formulated in the paper. The experimental proof of the postexcision transposition presented in the paper, is a good support to the version of "recombinational" excision.  相似文献   

19.
In recent work, we described the excision of a large genomic region from Enterococcus faecium D344R in which the sequence from "joint" regions suggested that excision resulted from the interaction of conjugative transposon Tn916 and the related mobile element Tn5386. In the present study, we examined the ability of integrases and integrase-excisase combinations from Tn916 and Tn5386 to promote the excision of constructs consisting of the termini of Tn916, Tn5386, and the VanB mobile element Tn5382. Integrases alone from either Tn916 or Tn5386 promoted the circularization of constructs from the three different transposons, even when the different termini used in the constructs were discordant in their transposon of origin. The termini of Tn916 and Tn5382 found in all joints were consistent with previously identified Tn916 and Tn5382 termini. Substantial variation was seen in the integrase terminus of Tn5386 used to form joints, regardless of the integrase that was responsible for circularization. Variability was observed in joints formed from Tn5386 constructs, in contrast to joints observed with the termini of Tn916 or Tn5382. The coexpression of excisase yielded some variability in the joint regions observed. These data confirm that integrases from some Tn916-like elements can promote circularization with termini derived from heterologous transposons and, as such, could promote excision of large genomic regions flanked by such elements. These findings also raise interesting questions about the sequence specificities of the C terminals of Tn916-like integrases, which bind to the ends and facilitate strand exchange.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号