首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 2.5% O2 atmosphere with and without ethylene on the activities of hydrolytic enzymes associated with cell walls, and total protein profile during ripening of avocado fruits (Persea americana Mill., cv Hass) were investigated. The low 2.5% O2 atmosphere prevented the rise in the activities of cellulase, polygalacturonase, and acid phosphatase in avocado fruits whose ripening was initiated with ethylene. Addition of 100 microliters per liter ethylene to low O2 atmosphere did not alter these suppressive effects of 2.5% O2. Furthermore, 2.5% O2 atmosphere delayed the development of a number of polypeptides that appear during ripening of avocado fruits while at the same time new polypeptides accumulated. The composition of the extraction buffer and its pH greatly affected the recovery of cellulase activity and its total immunoreactive protein.  相似文献   

2.
This study investigates the effect of 2.5% O2, both alone and in combination with ethylene, on respiration, sugar accumulation and activities of pectin methylesterase and acid phosphatase during ripening of bananas (Musa paradisiaca sapientum). In addition, the changes in the phosphatase isoenzyme profiles are also analyzed. Low oxygen diminished respiration and slowed down the accumulation of sugars and development of the yellow color. Furthermore, low O2 prevented the rise in acid phosphatase activities and this suppression was not reversed by the inclusion of 100 microliters per liter ethylene in 2.5% O2 atmosphere. Gel electrophoresis of both the soluble and particulate cell-free fractions under nondenaturing conditions revealed the presence of 8 and 9 isoenzymes in the soluble and particulate fractions, respectively. Low O2 suppressed the appearance of all isoenzymes, and the addition of 500 microliters per liter ethylene to the low oxygen atmosphere did not reverse this effect. Similarly, the decline in pectin methylesterase that was observed in air-ripened fruits was prevented by 2.5% O2 alone and in combination with 500 microliters per liter ethylene.  相似文献   

3.
Cell wall enzymes at different stages of fruit development were compared between the normal Rutgers and the isogenic nonripening rin tomato. In Rutgers, a detectable increase in polygalacturonase (PG) activity was observed 6 days prior to the respiratory climacteric (43 days postanthesis). The maximum increase in PG activity occurred after C2H2 and CO2 production reached their peak. However, in the rin tomato, no change in PG activity was noted up to 100 days postanthesis. Cellulase activity increased in Rutgers fruits prior to the respiratory climacteric and continued to increase thereafter. Similar changes in cellulase activity were also observed in the nonclimacteric rin fruits. Short term ethylene treatment (2 days) of 36-day-old rin fruits increased cellulase activity, but had no effect on PG activity. Detectable changes in other parameters of ripening, such as chlorophyll loss and softening, also occurred prior to the respiratory climacteric. These results suggest that the failure of rin fruits to ripen is related to their low PG activity during maturity as compared with normal fruits.  相似文献   

4.
The activity of cellulase, cellulase-isoenzymes and polygalacturonase (PG) in the shoot/peduncle and calyx abscission zones (AZ-A and AZ-C, respectively) of young and mature Shamouti orange (Citrus sinensis (L.) Osbeck) fruit explants was tested after extraction of total enzymes from either exo- or endo-cellular fractions from fruits treated with ethylene or 2,4-D. Ethylene enhanced and 2,4-D delayed both abscission and the activity of exo- and endo-cellular cellulase and PG. When tested separately in the exo- and endo-cellular fraction, the effects of both growth regulators on the activity of almost all cellulase isoenzymes were similar, irrespective of their location in the tissue. In mature fruits no abscission occurred in AZ-A, and yet the activity of cellulase and PG was regulated by the hormones as in abscising AZs. This was also true for total activity of exo- and endo-cellular cellulase and PG. Similar effects were observed when the activity of cellulase isoenzymes was tested in AZ-A of non-abscising mature fruits. It is suggested that whenever the increase in activity of the hydrolytic enzymes, and especially cellulase, is not followed by abscission, the substrate is either immune or not available to the enzymes.  相似文献   

5.
6.
The nitrogen content of cell wall preparations from normal tomato (cv Ailsa Craig) fruit remained constant during ripening, whereas salt-soluble protein increased throughout this process. Tomato polygalacturonase released about twice as much protein from the preparations as salts did, with a maximum at the orange stage of development. Polygalacturonase-solubilized protein from the tomato mutant `ripening inhibitor' (rin) was less, and that from the mutant `Never ripe' (Nr) cell walls was more than that from normal wall preparations. Release of protein by fungal cellulase was limited, but was increased by the addition of polygalacturonase from the same source. Salt-solubilized protein contained a range of enzymic activities but these were distributed between fewer multimolecular forms than is the case for whole cell preparations. The results suggest that metabolically active protein, removable by strong salt solutions, cellulase, or polygalacturonase, remains attached to the cell walls of tomato fruit until late in ripening. The unusual amounts of protein attached to the cell walls of mutant fruit appear to be a reflection of the absence of some or all of the isoenzymes of polygalacturonase that are associated with normal ripening.  相似文献   

7.
Isoenzymes of glucose-6-phosphate dehydrogenase and 6-P-gluconate dehydrogenase from a 70% ammonium sulfate precipitate of spinach leaf homogenate were separated by differential solubilization in a gradient of 70-0% ammonium sulfate and analyzed by disc gel electrophoresis. Isolated whole chloroplasts contained isoenzyme 1 of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase 1, whereas isoenzyme 2 of each was found in the soluble cytosol fraction. Both isoenzymes of each dehydrogenase were present in about equal amounts. Glucose-6-phosphate dehydrogenase isoenzymes 1 and 2 had pH optima of 9.2 and 9.0 and Km values of 400 and 330 μm, respectively. Molecular weights for both isoenzyme of glucose-6-phosphate dehydrogenase were very similar at about 105,000 ± 10% as estimated by sedimentation velocity measurements. For 6-phosphogluconate dehydrogenase isoenzymes 1 and 2 the pH optima were 9.0 and 9.3, respectively, the Km values were 100 and 80 μm, and the apparent molecular weights were also nearly identical at about 110,000 ± 10%. The data support the hypothesis that leaf cells have two oxidative pentose phosphate pathways, one in the chloroplast and the other in the cytosol.  相似文献   

8.
Fruits of Lycopersicon esculentum Mill cv Sonatine stored in 6% CO2, 6% O2, and 88% N2 for 14 weeks at 12°C, exhibited a temporal separation of certain biochemical events associated with ripening.

The specific activity of two citric acid cycle enzymes, citrate synthase and malate dehydrogenase, fell substantially during the first 2 weeks of storage when changes in organic acid concentration also occurred. During this period, lycopene, polygalacturonase, and ethylene were undetectable.

When fruit were removed from store, ethylene was evolved and polygalacturonase and invertase activity were rapidly initiated as was synthesis of lycopene.

To determine whether the changes in organic acid metabolism were affected by ethylene, fruit was kept at 22°C in either a normal atmosphere or a normal atmosphere supplemented with 27 microliters per liter of ethylene, and it was shown that in both atmospheres similar quantitative changes to those described above occurred in the citric acid cycle enzymes specific activities before any detectable increase in the specific activities of invertase and polygalacturonase. These latter changes, together with pigment changes, occurred between 2 and 3 days earlier in fruit exposed to ethylene, compared with those kept in a normal atmosphere.

  相似文献   

9.
The existence of a redox cycle leading to the production of hydrogen peroxide (H2O2) in the white rot fungus Pleurotus eryngii has been confirmed by incubations of 10-day-old mycelium with veratryl (3,4-dimethoxybenzyl) and anisyl (4-methoxybenzyl) compounds (alcohols, aldehydes, and acids). Veratraldehyde and anisaldehyde were reduced by aryl-alcohol dehydrogenase to their corresponding alcohols, which were oxidized by aryl-alcohol oxidase, producing H2O2. Veratric and anisic acids were incorporated into the cycle after their reduction, which was catalyzed by aryl-aldehyde dehydrogenase. With the use of different initial concentrations of either veratryl alcohol, veratraldehyde, or veratric acid (0.5 to 4.0 mM), around 94% of veratraldehyde and 3% of veratryl alcohol (compared with initial concentrations) and trace amounts of veratric acid were found when equilibrium between reductive and oxidative activities had been reached, regardless of the initial compound used. At concentrations higher than 1 mM, veratric acid was not transformed, and at 1.0 mM, it produced a negative effect on the activities of aryl-alcohol oxidase and both dehydrogenases. H2O2 levels were proportional to the initial concentrations of veratryl compounds (around 0.5%), and an equilibrium between aryl-alcohol oxidase and an unknown H2O2-reducing system kept these levels steady. On the other hand, the concomitant production of the three above-mentioned enzymes during the active growth phase of the fungus was demonstrated. Finally, the possibility that anisaldehyde is the metabolite produced by P. eryngii for the maintenance of this redox cycle is discussed.  相似文献   

10.
The effect of low concentrations of O2 (1%) with or without the application of exogenous ethylene (10 l/l) on the production of endogenous ethylene, the activity of polygalacturonase (PG), and the ripening of tomato fruits during storage for three weeks at 20°C and four weeks at 10°C, followed by one week under ambient conditions (25°C) was studied. The internal ethylene concentration in the fruits stored under low O2 at 10 or 20°C was low during storage and increased only when fruits were transferred to ambient conditions. The application of exogenous ethylene to fruits stored under low O2 at 10 or 20°C did not induce autocatalytic ethylene synthesis. By contrast, the internal ethylene concentration of fruits stored in air was high at 20°C and somewhat lower at 10°C. Under low O2 conditions, PG activity was low and the fruits remained firm and green throughout storage, whereas, during storage in the air, PG activity increased and the fruits softened and developed their characteristic red color.  相似文献   

11.
A successful method for the purification of NADP isocitrate dehydrogenase from a plant source, Zea mays, is reported. Two mitochondrial isoenzymes were found and purified to homogeneity by a course of acetone fractionation, bulk exchange on DEAE-cellulose, cellulose hydroxylapatite column chromatography, and continuous elution electrophoresis. The mitochondrial isoenzymes are very similar with respect to kinetic properties, response to solvent perturbation, and temperature dependence of the pH/V relationship of isocitrate dehydrogenation. The Michaelis constant for isocitrate is identical for both isoenzymes. The enzymes have a molecular weight of 81,000 as estimated by permeation chromatography and an isoelectric point of 5.5 as extrapolated from gel-electrophoretic mobilities. Detectable differences are confined to differences in electrophoretic mobilities and heat denaturation. In D2O the rate of the overall reaction from isocitrate to α-ketoglutarate and CO2 was about 3.6 times slower than the same reaction in H2O. Both the forward and reverse reactions, in which isocitrate is dehydrogenated or generated from oxalosuccinate, were observed to decrease by this amount in D2O. The decarboxylation of oxalosuccinate was found to decrease by only about 25% in D2O relative to the velocity of the reaction in H2O. Thus the slow step in the overall reaction must be the initial dehydrogenation step rather than the decarboxylation of oxalosuccinate. The pK of the overall reaction did not change in D2O as compared to H2O.  相似文献   

12.
The respective role of alcohol dehydrogenase, of the microsomal ethanol-oxidizing system, and of catalase in ethanol metabolism was assessed quantitatively in liver slices using various inhibitors and ethanol at a final concentration of 50 mm. Pyrazole (2 mm) virtually abolished cytosolic alcohol dehydrogenase activity but inhibited ethanol metabolism in liver slices by only 50–60%. The residual pyrazole-insensitive ethanol oxidation in liver slices remained unaffected by in vitro addition of the catalase inhibitor sodium azide (1 mm). At this concentration, sodium azide completely abolished catalatic activity of catalase in liver homogenate as well as peroxidatic activity of catalase in liver slices in the presence of dl-alanine. Similarly, in vivo administration of 3-amino-1,2,4-triazole, a compound which inhibits the activity of catalase but not that of the microsomal ethanol-oxidizing system, failed to decrease both the overall rates of ethanol oxidation and the activity of the pyrazole-insensitive pathway. Finally, butanol, a substrate and inhibitor of the microsomal ethanol-oxidizing system but not of catalase-H2O2, significantly decreased the pyrazole-insensitive ethanol metabolism in liver slices. These results indicate that alcohol dehydrogenase is responsible for half or more of ethanol metabolism by liver slices and that the microsomal ethanol-oxidizing system rather than catalase-H2O2 accounts for most if not all of the alcohol dehydrogenase-independent pathway.  相似文献   

13.
Etiolated pea (Pisum sativum) epicotyls synthesize a buffer-soluble cellulase (cellulase A) and a salt-soluble cellulase (cellulase B) (EC 3.2.1.4) after treatment with high (0.5%) auxin levels. Only cellulase A increased in activity after treatment with low (0.005%) auxin. Cellulase A was released into the supernatant after homogenization of tissue in dilute buffer (buffer-soluble), had a pH optimum at 5.5, was relatively thermostable, and its activity was inhibited by NaCl. Cellulase B was released by 1 m NaCl (salt-soluble) from excised tissue segments or from the insoluble residue remaining after removal of the buffer-soluble form. It had a pH optimum at 7.0, was thermolabile, and required salt for maximum activity. When subjected to polyacrylamide gel electrophoresis, the cellulase fraction released by NaCl from excised segments showed two bands of cellulase activity compared to several for the buffer-soluble fraction. Electrophoretic analysis of the buffer and salt-soluble fractions for marker enzymes indicated the presence of malate dehydrogenase activity in all fractions and glutamate dehydrogenase activity in the buffer-soluble fraction only.  相似文献   

14.
The solubilization and subsequent separation of the hepatic microsomal ethanol-oxidizing system from alcohol dehydrogenase and catalase activities by DEAE-cellulose column chromatography is described. Absence of alcohol dehydrogenase in the column eluates exhibiting microsomal ethanol-oxidizing system activity was demonstrated by the failure of NAD+ to promote ethanol oxidation at pH 9.6. Differentiation of the microsomal ethanol-oxidizing system from alcohol dehydrogenase was further shown by the apparent Km for ethanol (7.2 mm, insensitivity of the microsomal ethanol-oxidizing system to the alcohol dehydrogenase inhibitor pyrazole (0.1 mm) and by the failure of added alcohol dehydrogenase to increase the ethanol oxidation. Absence of catalatic activity in these fractions was demonstrated by spectrophotometric and polarographic assay. Differentiation of the microsomal ethanol-oxidizing system from the peroxidatic activity of catalase was shown by the apparent Km for oxygen (8.3 μm), insensitivity of the microsomal ethanol-oxidizing system to the catalase inhibitors azide and cyanide, and by the lack of a H2O2-generating system (glucose-glucose oxidase) to sustain ethanol oxidation in the eluates. The oxidation of ethanol to acetaldehyde by the alcohol dehydrogenase- and catalase-free fractions required NADPH and oxygen and was inhibited by CO. The column eluates showing microsomal ethanol-oxidizing system activity contained cytochrome P-450, NADPH-cytochrome c reductase, and phospholipids and also metabolized aminopyrine, benzphetamine, and aniline.  相似文献   

15.
Sagee O  Goren R  Riov J 《Plant physiology》1980,66(4):750-753
The question whether abscisic acid (ABA) induces cellulase and polygalacturonase activity and, hence, abscission directly or whether its action is mediated by C2H4 was studied in citrus (Osbeck var. Shamouti) leaf explants using aminoethoxyvinyl glycine (AVG), an inhibitor of C2H4 biosynthesis. ABA in concentrations of 10 micromolar and higher induced C2H4 production and accelerated abscission. AVG inhibited C2H4 formation, activity of cellulase and polygalacturonase, and abscission in ABA-treated explants. AVG did not inhibit the increase in the activity of the cell-wall degrading enzymes or abscission in a saturating level of externally supplied C2H4. This indicates that the effect of AVG resulted from inhibition of the formation of endogenous ethylene. The data indicate that in citrus leaf explants the induction of the activity of cellulase and polygalacturonase and abscission by ABA is mediated by C2H4.  相似文献   

16.
17.
Two isoenzymes of lactate dehydrogenase have been purified from Homarus americanus: One is found predominantly in the tail muscles; the other, in the walking leg muscles. This is the first demonstration of multiple forms of l-specific lactate dehydrogenase in an invertebrate organism. These proteins contain four essential sulfhydryl groups titratable by p-hydroxymercuribenzoate and 5,5′-dithiobis(2-nitrobenzoic acid). The molecular weights of these isoenzymes are dependent upon ionic strength. The native tetramer (Mr 145,000) exists in low ionic strength solutions; the active dimer (Mr 75,000), in high ionic strength solutions; this is the only example of lactate dehydrogenase disaggregation without concomitant loss in enzymatic activity. Microcomplement fixation studies suggest that there may be less than 4% difference in the primary structures of these two proteins.  相似文献   

18.
Thermoanaerobacter ethanolicus (ATCC 31550) has primary and secondary alcohol dehydrogenases. The two enzymes were purified to homogeneity as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The apparent Mrs of the primary and secondary alcohol dehydrogenases are 184,000 and 172,000, respectively. Both enzymes have high thermostability. They are tetrameric with apparently identical subunits and contain from 3.2 to 5.5 atoms of Zn per subunit. The two dehydrogenases are NADP dependent and reversibly convert ethanol and 1-propanol to the respective aldehydes. The Vm values with ethanol as a substrate are 45.6 μmol/min per mg for the primary alcohol dehydrogenase and 13 μmol/min per mg for the secondary alcohol dehydrogenase at pH 8.9 and 60°C. The primary enzyme oxidizes primary alcohols, including up to heptanol, at rates similar to that of ethanol. It is inactive with secondary alcohols. The secondary enzyme is inactive with 1-pentanol or longer chain alcohols. Its best substrate is 2-propanol, which is oxidized 15 times faster than ethanol. The secondary alcohol dehydrogenase is formed early during the growth cycle. It is stimulated by pyruvate and has a low Km for acetaldehyde (44.8 mM) in comparison to that of the primary alcohol dehydrogenase (210 mM). The latter enzyme is formed late in the growth cycle. It is postulated that the secondary alcohol dehydrogenase is largely responsible for the formation of ethanol in fermentations of carbohydrates by T. ethanolicus.  相似文献   

19.
Malate oxidation supported C2H2 reduction by bacteroids isolated from Sesbania rostrata stem nodules. Optimal activity reached 7.5 nanomoles per minute per milligram of dry weight and was in the same order of magnitude as that observed with succinate but always required a lower O2 tension. Malate dehydrogenase (EC 1.1.1.37), purified 66-fold from bacteroids, actively oxidized malate (Km = 0.19 millimolar). Malic enzyme (EC 1.1.1.39) from Sesbania bacteroids had a lower affinity for malate (Km = 2.32 millimolar). Both enzymes exclusively required NAD+ as cofactor and required an alkaline pH for optimal activity. 2-Oxoglutarate and oxalate, inhibiting malate dehydrogenase and malic enzyme, respectively, were used to specifically block each malate oxidation pathway in bacteroids. The predominance of malate dehydrogenase activity to support bacteroid N2 fixation was demonstrated. The inhibition of O2 consumption by 2-oxoglutarate confirmed the importance of the malate dehydrogenase pathway in malate oxidation. It is proposed that the utilization of malate, with regard to O2, is important in a general strategy of this legume to maintain N2 fixation under O2 limited conditions.  相似文献   

20.
The screening of enzyme patterns in seeds ofAllium cepa cv. Všetatská revealed the presence of the following enzymes: alcohol dehydrogenase, lactate dehyd ogenase, NAD+- and NADP+-glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase NAD+- and NADP+-malate dehydrogenase, NADH2- and NADPH2-tetrazolium reductase catalase, Superoxide dismutase, acid and alkaline phosphatase, L-leucine aminopeptidase, glutamate dehydrogenase, non-specific esterase, and cholinesterase. Altogether 17 enzymes were detected in onion seeds, nine of which had more than three isoenzymes, NAD+-malate dehydrogenase had 8, and non-specific esterase 9 isoenzymes. The demonstration of cholinesterase and Superoxide dismutase activities is remarkable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号