首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Molecular evolution of the avian CHD1 genes on the Z and W sex chromosomes   总被引:5,自引:0,他引:5  
Fridolfsson AK  Ellegren H 《Genetics》2000,155(4):1903-1912
Genes shared between the nonrecombining parts of the two types of sex chromosomes offer a potential means to study the molecular evolution of the same gene exposed to different genomic environments. We have analyzed the molecular evolution of the coding sequence of the first pair of genes found to be shared by the avian Z (present in both sexes) and W (female-specific) sex chromosomes, CHD1Z and CHD1W. We show here that these two genes evolve independently but are highly conserved at nucleotide as well as amino acid levels, thus not indicating a female-specific role of the CHD1W gene. From comparisons of sequence data from three avian lineages, the frequency of nonsynonymous substitutions (K(a)) was found to be higher for CHD1W (1.55 per 100 sites) than for CHD1Z (0.81), while the opposite was found for synonymous substitutions (K(s), 13.5 vs. 22.7). We argue that the lower effective population size and the absence of recombination on the W chromosome will generally imply that nonsynonymous substitutions accumulate faster on this chromosome than on the Z chromosome. The same should be true for the Y chromosome relative to the X chromosome in XY systems. Our data are compatible with a male-biased mutation rate, manifested by the faster rate of neutral evolution (synonymous substitutions) on the Z chromosome than on the female-specific W chromosome.  相似文献   

2.
Low levels of nucleotide diversity in mammalian Y chromosomes   总被引:10,自引:0,他引:10  
Sex chromosomes provide a useful context for the study of the relative importance of evolutionary forces affecting genetic diversity. The human Y chromosome shows levels of nucleotide diversity 20% that of autosomes, which is significantly less than expected when differences in effective population size and sex-specific mutation rates are taken into account. To study the generality of low levels of Y chromosome variability in mammalian genomes, we investigated nucleotide diversity in intron sequences of X (1.1-3.0 kb) and Y (0.7-3.5 kb) chromosome genes of five mammals: lynx, wolf, reindeer, cattle, and field vole. For all species, nucleotide diversity was found to be lower on Y than on X, with no segregating site observed in Y-linked sequences of lynx, reindeer, and cattle. For X chromosome sequences, nucleotide diversity was in the range of 1.6 x 10(-4) (lynx) to 8.0 x 10(-4) (field vole). When differences in effective population size and the extent of the male mutation bias were taken into account, all five species showed evidence of reduced levels of Y chromosome variability. Reduced levels of Y chromosome variability have also been observed in Drosophila and in plants, as well as in the female-specific W chromosome of birds. Among the different factors proposed to explain low levels of genetic variability in the sex-limited chromosome (Y/W), we note that selection is the only factor that is broadly applicable irrespective of mode of reproduction and whether there is male or female heterogamety.  相似文献   

3.
The rate of mutation for nucleotide substitution is generally higher among males than among females, likely owing to the larger number of DNA replications in spermatogenesis than in oogenesis. For insertion and deletion (indel) mutations, data from a few human genetic disease loci indicate that the two sexes may mutate at similar rates, possibly because such mutations arise in connection with meiotic crossing over. To address origin- and sex-specific rates of indel mutation we have conducted the first large-scale molecular evolutionary analysis of indels in noncoding DNA sequences from sex chromosomes. The rates are similar on the X and Y chromosomes of primates but about twice as high on the avian Z chromosome as on the W chromosome. The fact that indels are not uncommon on the nonrecombining Y and W chromosomes excludes meiotic crossing over as the main cause of indel mutation. On the other hand, the similar rates on X and Y indicate that the number of DNA replications (higher for Y than for X) is also not the main factor. Our observations are therefore consistent with a role of both DNA replication and recombination in the generation of short insertion and deletion mutations. A significant excess of deletion compared to insertion events is observed on the avian W chromosome, consistent with gradual DNA loss on a nonrecombining chromosome.  相似文献   

4.
Nucleotide diversity of the human Y chromosome is much lower than that in the rest of the genome. A new hypothesis postulates that this invariance may result from mutations in maternally inherited mitochondrial DNA (mtDNA), leading to impaired reproduction among males and lowered male effective population size. If correct, we should expect to see low levels of polymorphism in the male-specific Y chromosome of many organisms but not necessarily in the female-specific W chromosome in organisms with female heterogamety. However, recent observations from birds suggest that the avian W chromosome is very low in nucleotide diversity. This indicates that mtDNA mutations cannot broadly explain the evolution of the sex-limited chromosome. Other work has suggested that sexual selection at loci involved in sex determination or secondary sexual characteristics might reduce levels of genetic variability on Y through hitch-hiking effects. Although the W chromosome does not seen to play a dominant role for sex determination in birds, it cannot be excluded that selective sweeps arising from natural or sexual selection contribute to the low levels of genetic variability seen on this chromosome.  相似文献   

5.
Identifying the sex of a bird is important to ensure successful breeding strategies and effective conservation programs. Sex may be identified from the intron size of the CHD1 gene located on the avian sex chromosomes Z and W. However, because of the great nucleotide diversity across different avian species, no given intron is in widespread use without ambiguous results. Complicated modifications of the reaction condition are required to suit different species. Two CHD1 introns were used with a unified reaction condition in this study to simplify the procedure. Consequently, genders of 73 avian species covering 19 families were successfully identified based on this two‐intron approach. This means the ability to sex a wider range of avian species using a simplified procedure, greatly assisting in population management at zoos. Zoo Biol 26:425–431, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

6.
Whether the mutation rate differs between sexes has been a matter of discussion for years. Molecular analyses of mammals have indicated that males mutate more often than females, as manifested by the faster rate of neutral sequence evolution on the Y chromosome than on the X chromosome. However, these observations can as well be interpreted as specific reduction of the X chromosome mutation rate, which would be adaptive because of reducing the number of slightly deleterious recessive mutations exposed in hemizygote males. Recently, data from birds have suggested that vertebrate mutation rates may indeed be male-biased. In birds, females are the heterogametic sex (ZW), and analyses of the Z-linked CHD1Z gene have shown that it evolves faster than its W-linked and thus female-specific homologue, CHD1W. We have now studied the second avian gene known to exist in a copy on the nonrecombining regions of both the Z and the W chromosome, viz., the ATP synthase α-subunit (ATP5A1). In independent comparisons of three pairs of bird species from divergent lineages, intron sequences of the Z-linked copy (ATP5A1Z) were consistently found to evolve faster than the W-linked copy (ATP5A1W). From these data we calculated male-to-female mutation rate ratios (α) of 1.8, 2.3, and 5.0 in Galliform, Anseriform, and Ciconiiform lineages, respectively. Therefore, this study provides independent support for a male-biased mutation rate in birds. Received: 15 July 1999 / Accepted: 5 January 2000  相似文献   

7.
Because avian females are heterogametic, the reverse of mammals, avian sex chromosomes undergo significantly different patterns and numbers of DNA replications than do those in mammals. This makes the W (female-specific) and the Z chromosomes an excellent model system for the study of the replicative division hypothesis, which purports that DNA substitution rate is determined by the number of germline replications. The sex-specific chromosome in birds (the W) is predicted to change at the slowest rate of all avian chromosomes because it undergoes the fewest rounds of replication per unit of evolutionary time. Using published data on gametogenesis from a variety of sources, we estimated the ratio of male-to-female germline replications (c) in galliforms and anseriforms to be approximately 4.4. The value of c should predict the value of the ratio of male-to-female mutation rates (αm) if the replicative division hypothesis is true. Homologous DNA sequences including an intron and parts of two exons of the CHD gene were obtained from the W and the Z chromosomes in ostrich, sage grouse, canvasback duck, tundra swan, and snow goose. The exons show significantly different nucleotide composition from the introns, and the W-linked exons show evidence of relaxed constraint. The Z-linked intron is diverging ≈ 3.1 times faster than the W-linked intron. From this, αm was calculated to be approximately 4.1, with a confidence interval of 3.1 to 5.1. The data support the idea that the number of replicative divisions is a major determinant of substitution rate in the Eoavian genome. Received: 19 January 1999 / Accepted: 8 June 1999  相似文献   

8.
Reduced variation on the chicken Z chromosome   总被引:6,自引:0,他引:6  
Understanding the population genetic factors that shape genome variability is pivotal to the design and interpretation of studies using large-scale polymorphism data. We analyzed patterns of polymorphism and divergence at Z-linked and autosomal loci in the domestic chicken (Gallus gallus) to study the influence of mutation, effective population size, selection, and demography on levels of genetic diversity. A total of 14 autosomal introns (8316 bp) and 13 Z-linked introns (6856 bp) were sequenced in 50 chicken chromosomes from 10 highly divergent breeds. Genetic variation was significantly lower at Z-linked than at autosomal loci, with one segregating site every 39 bp at autosomal loci (theta(W) = 5.8 +/- 0.8 x 10(-3)) and one every 156 bp on the Z chromosome (theta(W) = 1.4 +/- 0.4 x 10(-3)). This difference may in part be due to a low male effective population size arising from skewed reproductive success among males, evident both in the wild ancestor-the red jungle fowl-and in poultry breeding. However, this effect cannot entirely explain the observed three- to fourfold reduction in Z chromosome diversity. Selection, in particular selective sweeps, may therefore have had an impact on reducing variation on the Z chromosome, a hypothesis supported by the observation of heterogeneity in diversity levels among loci on the Z chromosome and the lower recombination rate on Z than on autosomes. Selection on sex-linked genes may be particularly important in organisms with female heterogamety since the heritability of sex-linked sexually antagonistic alleles advantageous to males is improved when fathers pass a Z chromosome to their sons.  相似文献   

9.
The vast majority of extant birds possess highly differentiated Z and W sex chromosomes. Nucleotide sequence data from gametologs (homologs on opposite sex chromosomes) suggest that this divergence occurred throughout early bird evolution via stepwise cessation of recombination between identical sex chromosomal regions. Here, we investigated avian sex chromosome differentiation from a novel perspective, using retroposon insertions and random insertions/deletions for the reconstruction of gametologous gene trees. Our data confirm that the CHD1Z/CHD1W genes differentiated in the ancestor of the neognaths, whereas the NIPBLZ/NIPBLW genes diverged in the neoavian ancestor and independently within Galloanserae. The divergence of the ATP5A1Z/ATP5A1W genes in galloanserans occurred independently in the chicken, the screamer, and the ancestor of duck-related birds. In Neoaves, this gene pair differentiated in each of the six sampled representatives, respectively. Additionally, three of our investigated loci can be utilized as universal, easy-to-use independent tools for molecular sexing of Neoaves or Neognathae.  相似文献   

10.
Genes on the sex chromosomes are unique because of their sex-specific inheritance. One question is whether homologous gene pairs on the sex chromosomes, which have diverged in their sequence, have acquired different functions. We have analyzed the first homologous pair of genes (CHD1Z and CHD1W) discovered on the avian Z and W sex chromosomes of the zebra finch (Taeniopygia guttata) to examine whether functional differences may have evolved. Sequence analysis revealed that the two genes maintained a high degree of similarity especially within the C, H, and D domains, but outside of these regions larger differences were observed. Expression studies showed that CHD1W was unique to females and has the potential to produce a protein that CHD1Z does not. CHD1Z mRNA was expressed at a higher level in the male brain than in the female brain at various post-hatch ages. Reporter constructs containing the 5' flanking regions of each gene showed they had the ability to drive reporter expression in primary cell cultures. The 5' flanking region sequence of CHD1Z and CHD1W exhibited little homology, and differences in putative promoter elements were apparent. These differences between CHD1Z and CHD1W suggest that the two proteins may have diverged in their function.  相似文献   

11.
Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species.  相似文献   

12.
Handley LJ  Ceplitis H  Ellegren H 《Genetics》2004,167(1):367-376
The human X chromosome exhibits four "evolutionary strata," interpreted to represent distinct steps in the process whereby recombination became arrested between the proto X and proto Y. To test if this is a general feature of sex chromosome evolution, we studied the Z-W sex chromosomes of birds, which have female rather than male heterogamety and evolved from a different autosome pair than the mammalian X and Y. Here we analyze all five known gametologous Z-W gene pairs to investigate the "strata" hypothesis in birds. Comparisons of the rates of synonymous substitution and intronic divergence between Z and W gametologs reveal the presence of at least two evolutionary strata spread over the p and q arms of the chicken Z chromosome. A phylogenetic analysis of intronic sequence data from different avian lineages indicates that Z-W recombination ceased in the oldest stratum (on Zq; CHD1Z, HINTZ, and SPINZ) 102-170 million years ago (MYA), before the split of the Neoaves and Eoaves. However, recombination continued in the second stratum (on Zp; UBAP2Z and ATP5A1Z) until after the divergence of extant avian orders, with Z and W diverging 58-85 MYA. Our data suggest that progressive and stepwise cessation of recombination is a general feature behind sex chromosome evolution.  相似文献   

13.
A number of avian species are difficult to sex morphologically, especially as nestlings. Like other avian species, many species of Falconiformes are sexually monomorphic. Therefore, it is desirable that new methods based on DNA analysis are established in Falconiformes and other sexual monomorphic species. We identified sex in Falconiformes by two alternative methods. First, we used a sexing method based on the intronic length variation between CHD1W and CHD1Z using primers flanking the intron. In this method, two species of Falconidae could be identified for sexing. However, six species of Accipitridae could not, because they have few length variations. The second method used was based on differences in sequences between CHD1W and CHD1Z. From sequence analysis, a 3'-terminal mismatch primer on point mutation conserved among Falconiformes was designed, and identification of sex with the amplification refractory mutation system (ARMS) was performed. This method could identify sex in all species tested. In addition, because the 3'-terminal mismatch primer was designed on a point mutation conserved among Falconiformes, ARMS with these primers may identify sex in all Falconiformes. These are simple and rapid sexing methods, since only polymerase chain reaction (PCR) and agarose electrophoresis are required. In conclusion, sex identification by an alternative PCR approach based on intronic length variation and on differences in sequences between CHD1W and CHD1Z proved applicable to and useful for Falconiformes.  相似文献   

14.
Populations of the gecko lizard Gekko hokouensis (Gekkonidae, Squamata) on Okinawajima Island and a few other islands of the Ryukyu Archipelago, Japan, have the morphologically differentiated sex chromosomes, the acrocentric Z chromosome and the subtelocentric W chromosome, although the continental representative of this species reportedly shows no sex chromosome heteromorphism. To investigate the origin of sex chromosomes and the process of sex chromosomal differentiation in this species, we molecularly cloned the homologues of six chicken Z-linked genes and mapped them to the metaphase chromosomes of the Okinawajima sample. They were all localized to the Z and W chromosomes in the order ACO1/IREBPRPS6DMRT1CHD1GHRATP5A1, indicating that the origin of ZW chromosomes in G. hokouensis is the same as that in the class Aves, but is different from that in the suborder Ophidia. These results suggest that in reptiles the origin of sex chromosomes varies even within such a small clade as the order Squamata, employing a variety of genetic sex determination. ACO1/IREBP, RPS6, and DMRT1 were located on the Z long arm and the W short arm in the same order, suggesting that multiple rearrangements have occurred in this region of the W chromosome, where genetic differentiation between the Z and W chromosomes has been probably caused by the cessation of meiotic recombination.  相似文献   

15.
To investigate mutation-rate variation between autosomes and sex chromosomes in the avian genome, we have analyzed divergence between chicken (Gallus gallus) and turkey (Meleagris galopavo) sequences from 33 autosomal, 28 Z-linked, and 14 W-linked introns with a total ungapped alignment length of approximately 43,000 bp. There are pronounced differences in the mean divergence among autosomes and sex chromosomes (autosomes [A] = 10.08%, Z chromosome = 10.99%, and W chromosome = 5.74%), and we use these data to estimate the male-to-female mutation-rate ratio (alpha(m)) from Z/A, Z/W, and A/W comparisons at 1.71, 2.37, and 2.52, respectively. Because the alpha(m) estimates of the three comparisons do not differ significantly, we find no statistical support for a specific reduction in the Z chromosome mutation rate (Z reduction estimated at 4.89%, P = 0.286). The idea of mutation-rate reduction in the sex chromosome hemizygous in one sex (i.e., X in mammals, Z in birds) has been suggested on the basis of theory on adaptive mutation-rate evolution. If it exists in birds, the effect would, thus, seem to be weak; a preliminary power analysis suggests that it is significantly less than 18%. Because divergence may vary within chromosomal classes as a result of variation in mutation and/or selection, we developed a novel double-bootstrapping method, bootstrapping both by introns and sites from concatenated alignments, to estimate confidence intervals for chromosomal class rates and for alpha(m). The narrowest interval for the alpha(m) estimate is 1.88 to 2.97 from the Z/W comparison. We also estimated alpha(m) using maximum likelihood on data from all three chromosome classes; this method yielded alpha(m) = 2.47 and approximate 95% confidence intervals of 2.27 to 2.68. Our data are broadly consistent with the idea that mutation-rate differences between chromosomal classes can be explained by the male mutation bias alone.  相似文献   

16.
Parallel divergence and degradation of the avian W sex chromosome   总被引:1,自引:0,他引:1  
Sex chromosomes are ubiquitous in birds but our understanding of how they originated and evolved has remained incomplete. Recent work by Tsuda et al. on tinamou and ratite birds suggests that, although all bird sex chromosomes evolved from the same pair of autosomes, the Z and W sex chromosomes have diverged from one another several times independently. This parallel evolution of the avian W presents a means for comparison in studies of sex chromosome evolution, which could help us understand more about the general forces that shape the development of all types of sex chromosome.  相似文献   

17.
18.
In chickens and other birds, females have two different sex chromosomes (ZW), whereas males carry two homologous sex chromosomes (ZZ). The primary sex ratio can thus be determined by genetic analysis of the sex chromosome of the ovum before fertilization. Sex diagnosis is more reliable when there are more cells, i.e. sufficient DNA, for the analysis. In this study, eggs from virgin hens were incubated for 3 days and the number of cells in the germinal discs was counted. A median of 2.5 cells was counted with a range of two to 20 cells. We also counted cells in the germinal discs of unfertilized eggs of inseminated hens and recorded a median of three cells and a range of two to 40 cells. Sex diagnosis based on polymerase chain reaction (PCR) amplification of Z and W chromosomes specific fragments from the CHD1 gene in 30 incubated eggs obtained from 35-week-old virgin hens gave a ratio of 13 Z to 15 W chromosomes with two samples undetermined.The unfertilized eggs of three groups of chickens were subjected to sex diagnosis to supplement the sex ratio data of an incubation experiment (see companion paper). The high proportion of Z chromosomes diagnosed in all three groups by two independent gene products suggests a sex difference on developmental potential and/or a sex chromosome segregation biased toward males in unfertilized eggs especially at the beginning of reproduction.  相似文献   

19.
de Kloet RS  de Kloet SR 《Genetica》2003,119(3):333-342
Tinamous (Aves, Palaeognathae, Tinamiformes) are primitive birds, generally considered to be the sister group to the ratites. Tinamous possess a W sex-chromosome, intermediate in heterochromatization between the largely euchromatic W chromosome of the ratites and the highly condensed W chromosome of the neognathous birds. Of the four genes which are known to have diverged copies on the neognathous avian W and Z chromosome (ATP5A1, CHD1, PKC and SPIN) only the spindlin gene has W- and Z-chromosomal forms in the tinamiformes. This paper describes experiments which show that the sequences of these forms are more similar to each other and to the homologous undifferentiated spindlin gene sequences in the ratite genome than to the W or Z forms of the spindlin gene in other, neognathous species. This suggests that cessation of recombination at the spindlin locus of the ancestral W and Z chromosomes of the paleognathous tinamiformes and the neognathous avian species were independent events.  相似文献   

20.
Pseudoautosomal regions (PARs) shared by avian Z and W sex chromosomes are typically small homologous regions within which recombination still occurs and are hypothesized to share the properties of autosomes. We capitalized on the unusual structure of the sex chromosomes of emus, Dromaius novaehollandiae, which consist almost entirely of PAR shared by both sex chromosomes, to test this hypothesis. We compared recombination, linkage disequilibrium (LD), GC content, and nucleotide diversity between pseudoautosomal and autosomal loci derived from 11 emu bacterial artificial chromosome (BAC) clones that were mapped to chromosomes by fluorescent in situ hybridization. Nucleotide diversity (pi = 4N(e)mu) was not significantly lower in pseudoautosomal loci (14 loci, 1.9 +/- 2.4 x 10(-3)) than autosomal loci (8 loci, 4.2 +/- 6.1 x 10(-3)). By contrast, recombination per site within BAC-end sequences (rho = 4Nc) (pseudoautosomal, 3.9 +/- 6.9 x 10(-2); autosomal, 2.3 +/- 3.7 x 10(-2)) was higher and average LD (D') (pseudoautosomal, 4.2 +/- 0.2 x 10(-1); autosomal, 4.7 +/- 0.5 x 10(-1)) slightly lower in pseudoautosomal sequences. We also report evidence of deviation from a simple neutral model in the PAR and in autosomal loci, possibly caused by departures from demographic equilibrium, such as population growth. This study provides a snapshot of the population genetics of avian sex chromosomes at an early stage of differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号