首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli endonuclease IV hydrolyses the C(3')-O-P bond 5' to a 3'-terminal base-free deoxyribose. It also hydrolyses the C(3')-O-P bond 5' to a 3'-terminal base-free 2',3'-unsaturated sugar produced by nicking 3' to an AP (apurinic or apyrimidinic) site by beta-elimination; this explains why the unproductive end produced by beta-elimination is converted by the enzyme into a 3'-OH end able to prime DNA synthesis. The action of E. coli endonuclease IV on an internal AP site is more complex: in a first step the C(3')-O-P bond 5' to the AP site is hydrolysed, but in a second step the 5'-terminal base-free deoxyribose 5'-phosphate is lost. This loss is due to a spontaneous beta-elimination reaction in which the enzyme plays no role. The extreme lability of the C(3')-O-P bond 3' to a 5'-terminal AP site contrasts with the relative stability of the same bond 3' to an internal AP site; in the absence of beta-elimination catalysts, at 37 degrees C the half-life of the former is about 2 h and that of the latter 200 h. The extreme lability of a 5'-terminal AP site means that, after nicking 5' to an AP site with an AP endonuclease, in principle no 5'----3' exonuclease is needed to excise the AP site: it falls off spontaneously. We have repaired DNA containing AP sites with an AP endonuclease (E. coli endonuclease IV or the chromatin AP endonuclease from rat liver), a DNA polymerase devoid of 5'----3' exonuclease activity (Klenow polymerase or rat liver DNA polymerase beta) and a DNA ligase. Catalysts of beta-elimination, such as spermine, can drastically shorten the already brief half-life of a 5'-terminal AP site; it is what very probably happens in the chromatin of eukaryotic cells. E. coli endonuclease IV also probably participates in the repair of strand breaks produced by ionizing radiations: as E. coli endonuclease VI/exonuclease III, it is a 3'-phosphoglycollatase and also a 3'-phosphatase. The 3'-phosphatase activity of E. coli endonuclease VI/exonuclease III and E. coli endonuclease IV can also be useful when the AP site has been excised by a beta delta-elimination reaction.  相似文献   

2.
Photoalkylation, the ultraviolet irradiation of DNA with isopropanol and di-tert-butylperoxide, causes a variety of base alterations. These include 8-(2-hydroxy-2-propyl)guanines, 8-(2-hydroxy-2-propyl)adenines and thymine dimers. An E. coli endonuclease against photoalkylated DNA was assayed by conversion of superhelical PM2 phage DNA to the nicked form. Enzyme activities were compared between extracts of strain BW9109 (xth-), lacking exonuclease III activity, and strain BW434 (xth-,nth-), deficient in both exonuclease III and endonuclease III. The endonuclease level in the double mutant against substrate photoalkylated DNA was under 20% of the activity in the mutant lacking only exonuclease III. Irradiation of the DNA substrate in the absence of isopropanol did not affect the activity in either strain. Analysis by polyacrylamide gel electrophoresis identified the sites of DNA cleavage by purified E. coli endonuclease III as cytosines, both in DNA irradiated at biologically significant wavelengths and in photoalkylated DNA. Neither 8-(2-hydroxy-2-propyl)purines, pyrimidine dimers, uracils nor 6-4'-(pyrimidin-2'-one)pyrimidines were substrates for the enzyme.  相似文献   

3.
The main endonuclease for apurinic sites of Escherichia coli (endonuclease VI) has no action on normal strands, either in double-stranded or single-stranded DNA, or on alkylated sites. The enzyme has an optimum pH at 8.5, is inhibited by EDTA and needs Mg2+ for its activity; it has a half-life of 7 min at 40 degrees C. A purified preparation of endonuclease VI, free of endonuclease II activity, contained exonuclease III; the two activities (endonuclease VI and exonuclease III) copurified and were inactivated with the same half-lives at 40 degrees C. Endonuclease VI cuts the DNA strands on the 5' side of the apurinic sites giving a 3'-OH and a 5'-phosphate, and exonuclease III, working afterwards, leaves the apurinic site in the DNA molecule; this apurinic site can subsequently be removed by DNA polymerase I. The details of the excision of apurinic sites in vitro from DNA by endonuclease VI/exonuclease III, DNA polymerase I and ligase, are described; it is suggested that exonuclease III works as an antiligase to facilitate the DNA repair.  相似文献   

4.
The oligonucleotide [5'-32P]pdT8d(-)dTn, containing an apurinic/apyrimidinic (AP) site [d(-)], yields three radioactive products when incubated at alkaline pH: two of them, forming a doublet approximately at the level of pdT8dA when analysed by polyacrylamide-gel electrophoresis, are the result of the beta-elimination reaction, whereas the third is pdT8p resulting from beta delta-elimination. The incubation of [5'-32P]pdT8d(-)dTn, hybridized with poly(dA), with E. coli endonuclease III yields two radioactive products which have the same electrophoretic behaviour as the doublet obtained by alkaline beta-elimination. The oligonucleotide pdT8d(-) is degraded by the 3'-5' exonuclease activity of T4 DNA polymerase as well as pdT8dA, showing that a base-free deoxyribose at the 3' end is not an obstacle for this activity. The radioactive products from [5'-32P]pdT8d(-)dTn cleaved by alkaline beta-elimination or by E. coli endonuclease III are not degraded by the 3'-5' exonuclease activity of T4 DNA polymerase. When DNA containing AP sites labelled with 32P 5' to the base-free deoxyribose labelled with 3H in the 1' and 2' positions is degraded by E. coli endonuclease VI (exonuclease III) and snake venom phosphodiesterase, the two radionuclides are found exclusively in deoxyribose 5-phosphate and the 3H/32P ratio in this sugar phosphate is the same as in the substrate DNA. When DNA containing these doubly-labelled AP sites is degraded by alkaline treatment or with Lys-Trp-Lys, followed by E. coli endonuclease VI (exonuclease III), some 3H is found in a volatile compound (probably 3H2O) whereas the 3H/32P ratio is decreased in the resulting sugar phosphate which has a chromatographic behaviour different from that of deoxyribose 5-phosphate. Treatment of the DNA containing doubly-labelled AP sites with E. coli endonuclease III, then with E. coli endonuclease VI (exonuclease III), also results in the loss of 3H and the formation of a sugar phosphate with a lower 3H/32P ratio that behaves chromatographically as the beta-elimination product digested with E. coli endonuclease VI (exonuclease III). From these data, we conclude that E. coli endonuclease III cleaves the phosphodiester bond 3' to the AP site, but that the cleavage is not a hydrolysis leaving a base-free deoxyribose at the 3' end as it has been so far assumed. The cleavage might be the result of a beta-elimination analogous to the one produced by an alkaline pH or Lys-Trp-Lys. Thus it would seem that E. coli 'endonuclease III' is, after all, not an endonuclease.  相似文献   

5.
1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.  相似文献   

6.
Previous characterization of Escherichia coli endonuclease IV has shown that the enzyme specifically cleaves the DNA backbone at apurinic/apyrimidinic sites and removes 3' DNA blocking groups. By contrast, and unlike the major apurinic/apyrimidinic endonuclease exonuclease III, negligible exonuclease activity has been associated with endonuclease IV. Here we report that endonuclease IV does possess an intrinsic 3'-5' exonuclease activity. The activity was detected in purified preparations of the endonuclease IV protein from E. coli and from the distantly related thermophile Thermotoga maritima; it co-eluted with both enzymes under different chromatographic conditions. Induction of either endonuclease IV in an E. coli overexpression system resulted in induction of the exonuclease activity, and the E. coli exonuclease activity had similar heat stability to the endonuclease IV AP endonuclease activity. Characterization of the exonuclease activity showed that its progression on substrate is sensitive to ionic strength, metal ions, EDTA, and reducing conditions. Substrates with 3' recessed ends were preferred substrates for the 3'-5' exonuclease activity. Comparison of the relative apurinic/apyrimidinic endonuclease and exonuclease activity of endonuclease IV shows that the relative exonuclease activity is high and is likely to be significant in vivo.  相似文献   

7.
L Gu  S M Huang    M Sander 《Nucleic acids research》1993,21(20):4788-4795
Drosophila Rrp1 protein has four tightly associated enzymatic activities: DNA strand transfer, ssDNA renaturation, dsDNA 3'-exonuclease and apurinic/apyrimidinic (AP) endonuclease. The carboxy-terminal region of Rrp1 is homologous to Escherichia coli exonuclease III and several eukaryotic AP endonucleases. All members of this protein family cleave abasic sites. Rrp1 protein was expressed under the control of the E. coli RNA polymerase tac promoter (pRrp1-tac) in two repair deficient E. coli strains (BW528 and LG101) lacking both exonuclease III (xth) and endonuclease IV (nfo). Rrp1 confers resistance to killing by oxidative, antitumor and alkylating agents that damage DNA (hydrogen peroxide, t-butylhydroperoxide, bleomycin, methyl methanesulfonate, and mitomycin C). Complementation of the repair deficiency by Rrp1 provides up to a two log increase in survival and requires the C-terminal nuclease region of Rrp1, but not its N-terminal region. The AP endonuclease activity in extracts from the repair deficient strain LG101 is increased up to 12-fold when the strain contains pRrp1-tac. These results indicate that pRrp1-tac directs the synthesis of active enzyme, and that the nuclease activities of Rrp1 are likely to be the cause of the increased resistance to DNA damage of the mutant cells.  相似文献   

8.
DNA modifications induced either by photosensitization (illumination in the presence of methylene blue) or by chemically generated singlet oxygen (thermal decomposition of an 1,4-etheno-2,3-benzodioxin) are recognized and incised by repair endonucleases present in crude bacterial cell extracts. Only a small fraction of the incised modifications are sites of base loss (AP-sites) sensitive to exonuclease III, endonuclease IV from E. coli or to the UV-endonuclease from M. luteus. Cell extracts from E. coli strains overproducing or defective in endonuclease III recognize the modifications induced by illumination in the presence of methylene blue just as well as do those from wild-type E. coli strains. This indicates that dihydropyrimidine derivatives, which are characteristic of hydroxyl radical-induced DNA modifications, are absent. In contrast, most of the modifications induced are not recognized by a cell extract from a fpg strain defective in formamidopyrimidine-DNA glycosylase FPG protein). Furthermore, incision by a cell extract from an E. coli strain overproducing FPG protein takes place at much lower protein concentration than with the wild-type strain. Experiments with purified FPG protein confirm that this enzyme is responsible for the recognition of singlet oxygen-induced DNA base modifications.  相似文献   

9.
Contradictory data have recently been published from two different laboratories on the presence vs absence of an intrinsic endonucliolytic activity of E. coli exonuclease III at apurinic sites in double-stranded DNA. It is shown here that an endonuclease activity of this specificity co-chromatographs exactly with exonuclease III on phosphocellulose and Sephadex G-75 columns, indicating that the endonuclease and exonuclease activities are due to the same enzyme. In addition, another E. coli endonuclease specific for apurinic sites exists, which can be separated from exonuclease III by the same chromatographic procedures.  相似文献   

10.
We have isolated an endonuclease from E. coli active on bleomycin-treated DNA. Purification on DEAE-cellulose separated this activity in strains lacking endonuclease I, endonuclease III or exonuclease III. After DEAE chromatography, the enzyme was active in the absence of divalent cations and was not inhibited by tRNA or harmane. In addition, this enzyme was stable at 45 degrees C for 20 min. These properties are consistent with this activity being endonuclease IV. This was supported by our finding no activity in a strain lacking endonuclease IV.  相似文献   

11.
Mechanism of action of Micrococcus luteus gamma-endonuclease   总被引:5,自引:0,他引:5  
Micrococcus luteus extracts contain gamma-endonuclease, a Mg2+-independent endonuclease that cleaves gamma-irradiated DNA. This enzyme has been purified approximately 1000-fold, and the purified enzyme was used to study its substrate specificity and mechanism of action. gamma-Endonuclease cleaves DNA containing either thymine glycols, urea residues, or apurinic sites but not undamaged DNA or DNA containing reduced apurinic sites. The enzyme has both N-glycosylase activity that releases thymine glycol residues from OsO4-treated DNA and an associated apurinic endonuclease activity. The location and nature of the cleavage site produced has been determined with DNA sequencing techniques. gamma-Endonuclease cleaves DNA containing thymine glycols or apurinic sites immediately 3' to the damaged or missing base. Cleavage results in a 5'-phosphate terminus and a 3' baseless sugar residue. Cleavage sites can be converted to primers for DNA polymerase I by subsequent treatment with Escherichia coli exonuclease III. The mechanism of action of gamma-endonuclease and its substrate specificity are very similar to those identified for E. coli endonuclease III.  相似文献   

12.
We have developed simple and sensitive assays that distinguish the main classes of apurinic/apyrimidinic (AP) endonucleases: Class I enzymes that cleave on the 3' side of AP sites by beta-elimination, and Class II enzymes that cleave by hydrolysis on the 5' side. The distinction of the two types depends on the use of a synthetic DNA polymer that contains AP sites with 5'-[32P]phosphate residues. Using this approach, we now show directly that Escherichia coli endonuclease IV and human AP endonuclease are Class II enzymes, as inferred previously on the basis of indirect assays. The assay method does not exhibit significant interference by nonspecific nucleases or primary amines, which allows the ready determination of different AP endonuclease activities in crude cell extracts. In this way, we show that virtually all of the Class II AP endonuclease activity in E. coli can be accounted for by two enzymes: exonuclease III and endonuclease IV. In the yeast Saccharomyces cerevisiae, the Class II AP endonuclease activity is totally dependent on a single enzyme, the Apn1 protein, but there are probably multiple Class I enzymes. The versatility and ease of our approach should be useful for characterizing this important class of DNA repair enzymes in diverse systems.  相似文献   

13.
The aromatic amine 9-amino-ellipticine is a synthetic DNA intercalating compound derived from the antitumor agent ellipticine, which cleaves at very low doses DNA containing apurinic sites by beta-elimination through formation of a Schiff base. This compound has been shown to potentiate the cytotoxic effect of alkylating drugs, such as dimethyl sulfate, in E. coli through a mechanism involving apurinic sites. We have studied the ability of 9-amino-ellipticine to inhibit an enzymatic repair system mimicking base-excision repair, in which E. coli exonuclease III only presents an endonuclease for apurinic/apyrimidinic site activity. 10 microM of 9-amino-ellipticine inhibits 70% of apurinic site repair. Other intercalating agents with similar affinities for DNA do not induce any inhibition. In another system designed for the direct assay of the exonuclease III-induced incisions 5' to AP sites 10 microM of 9-amino-ellipticine inhibits 65% of the endonuclease for apurinic/apyrimidinic site activity of E. coli exonuclease III. The 9-amino-ellipticine-induced formation of a 2',3'-unsaturated deoxyribose and cleavage at the 3' side of the apurinic site, and possible creation of an adduct, as suggested by Bertrand and coworkers (1989), on the 3' position of the deoxyribose seem to strongly inhibit the endonuclease for apurinic/apyrimidinic site activity. 9-Amino-ellipticine appears therefore to be the first small ligand which can inhibit, by an irreversible modification of the substrate, the repair of apurinic sites through the base excision-repair pathway at a pharmacological concentration.  相似文献   

14.
AP endonucleases catalyse an important step in the base excision repair (BER) pathway by incising the phosphodiester backbone of damaged DNA immediately 5' to an abasic site. Here, we report the cloning and expression of the 774 bp Mth0212 gene from the thermophilic archaeon Methanothermobacter thermautotrophicus, which codes for a putative AP endonuclease. The 30.3 kDa protein shares 30% sequence identity with exonuclease III (ExoIII) of Escherichia coli and 40% sequence identity with the human AP endonuclease Ape1. The gene was amplified from a culture sample and cloned into an expression vector. Using an E. coli host, the thermophilic protein could be produced and purified. Characterization of the enzymatic activity revealed strong binding and Mg2+-dependent nicking activity on undamaged double-stranded (ds) DNA at low ionic strength, even at temperatures below the optimum growth temperature of M. thermautotrophicus (65 degrees C). Additionally, a much faster nicking activity on AP site containing DNA was demonstrated. Unspecific incision of undamaged ds DNA was nearly inhibited at KCl concentration of approximately 0.5 M, whereas incision at AP sites was still complete at such salt concentrations. Nicked DNA was further degraded at temperatures above 50 degrees C, probably by an exonucleolytic activity of the enzyme, which was also found on recessed 3' ends of linearized ds DNA. The enzyme was active at temperatures up to 70 degrees C and, using circular dichroism spectroscopy, shown to denature at temperatures approaching 80 degrees C. Considering the high intracellular potassium ion concentration in M. thermautotrophicus, our results suggest that the characterized thermophilic enzyme acts as an AP endonuclease in vivo with similar activities as Ape1.  相似文献   

15.
Apurinic/apyrimidinic (AP) sites in cellular DNA are considered to be both cytotoxic and mutagenic, and can arise spontaneously or following exposure to DNA damaging agents. We have isolated cDNA clones which encode an endonuclease, designated HAP1 (human AP endonuclease 1), that catalyses the initial step in AP site repair in human cells. The predicted HAP1 protein has an Mr of 35,500 and shows striking sequence similarity (93% identity) to BAP 1, a bovine AP endonuclease enzyme. Significant sequence homology to two bacterial DNA repair enzymes, E. coli exonuclease III and S. pneumoniae ExoA proteins, and to Drosophila Rrp1 protein is also apparent. We have expressed the HAP1 cDNA in E. coli mutants lacking exonuclease III (xth), endonuclease IV (nfo), or both AP endonucleases. The HAP1 protein can substitute for exonuclease III, but not for endonuclease IV, in respect of some, but not all, DNA repair and mutagenesis functions. Moreover, a dut xth (ts) double mutant, which is nonviable at 42 degrees C due to an accumulation of unrepaired AP sites following excision of uracil from DNA, was rescued by expression of the HAP1 cDNA. These results indicate that AP endonucleases show remarkable conservation of both primary sequence and function. We would predict that the HAP1 protein is important in human cells for protection against the toxic and mutagenic effects of DNA damaging agents.  相似文献   

16.
Recognition of oxidized abasic sites by repair endonucleases.   总被引:7,自引:3,他引:4       下载免费PDF全文
The recognition of 'regular' and 'oxidized' sites of base loss (AP sites) in DNA by various AP endonucleases was compared. Model substrates with regular AP sites (resulting from mere hydrolysis of the glycosylic bond) were produced by damaging bacteriophage PM2 DNA by exposure to low pH; those with AP sites oxidized at the C-4'- and C-1'-position of the sugar moiety by exposure to Fe(III)-bleomycin in the presence of H2O2 and to Cu(II)-phenanthroline in the presence of H2O2 and ethanol, respectively. The results confirmed that AP sites-together with single-strand breaks-are indeed the predominant type of DNA modification in all three cases. For the recognition of 4'-oxidized AP sites, a 400-fold higher concentration of Escherichia coli exonuclease III and between 5-fold and 50-fold higher concentrations of bacteriophage T4 endonuclease V, E. coli endonuclease III and E. coli FPG protein were required than for the recognition of regular AP sites. In contrast, the recognition of 4'-oxidized AP sites by E. coli endonuclease IV was effected by 4-fold lower concentrations than needed for regular AP sites. 1'-oxidized AP sites (generated by activated Cu(II)-phenanthroline) were recognized by endonuclease IV and exonuclease III only slightly (3-fold and 13-fold, respectively) less efficiently than regular AP sites. In contrast, there was virtually no recognition of 1'-oxidized AP sites by the enzymes which cleave at the 3' side of AP sites (T4 endonuclease V, endonuclease III and FPG protein). The described differences were exploited for the analysis of the DNA damage induced by hydroxyl radicals, generated by ionizing radiation or Fe(III)-nitrilotriacetate in the presence of H2O2. The results indicate that both regular and 1'-oxidized AP sites represent only minor fractions of the AP sites induced by hydroxyl radicals.  相似文献   

17.
A new endonuclease from Escherichia coli acting at apurinic sites in DNA.   总被引:27,自引:0,他引:27  
A new DNA endonuclease has been purified 3000-fold from Escherichia coli. The enzyme specifically catalyzes the formation of single strand breaks at apurinic and apyrimidinic sites in DNA, but has no activity on intact or single-stranded DNA. Further, the enzyme shows little or no activity on heavily ultraviolet-irradiated DNA, but cleaves x-irradiated DNA, presumably at apurinic and apyrimidinic sites introduced by the radiation treatment. The enzyme, which is tentatively named endonuclease IV, has no detectable associated exonuclease or DNA N-glycosidase activity and does not seem to be identical with any previously known E. coli endonuclease. Endonuclease IV has no Mg2+ requirement, and is fully active in the presence of EDTA. Enzyme activity is stimulated by 0.2 to 0.3 M NaCl and is unusually salt-resistant. Further, the enzyme is fairly heat-stable, and is not inhibited by tRNA. The sidimentation coefficient, S(o)20,w, is 3.4 S. It seems that endonuclease IV is active in DNA repair.  相似文献   

18.
Greenberg MM  Weledji YN  Kim J  Bales BC 《Biochemistry》2004,43(25):8178-8183
2-Deoxyribonolactone (L) and the C4'-oxidized abasic site (C4-AP) are produced by a variety of DNA-damaging agents. If not repaired, these lesions can be mutagenic. Exonuclease III and endonuclease IV are the major enzymes in E. coli responsible for 5'-incision of abasic sites (APs), the first steps in AP repair. Endonuclease III efficiently excises AP lesions via intermediate Schiff-base formation. Incision of L and C4-AP lesions by exonuclease III and endonuclease IV was determined under steady-state conditions using oligonucleotide duplexes containing the lesions at defined sites. An abasic lesion (AP) in an otherwise identical DNA sequence was incised by exonuclease III or endonuclease IV approximately 6-fold more efficiently than either of the oxidized abasic sites (L, C4-AP). Endonuclease IV incision efficiency of 2-deoxyribonolactone or C4-AP was independent of whether the lesion was opposite dA or dG. 2-Deoxyribonolactone is known to cross-link to endonuclease III (Hashimoto, M. (2001) J. Am. Chem. Soc. 123, 3161.). However, the C4-AP lesion is efficiently excised by endonuclease III. Oxidized abasic site repair by endonuclease IV and endonuclease III (C4-AP only) is approximately 100-fold less efficient than repair by exonuclease III. These results suggest that the first step of C4-AP and L oxidized abasic site repair will be the same as that of regular AP lesions in E. coli.  相似文献   

19.
Enzyme action at 3' termini of ionizing radiation-induced DNA strand breaks   总被引:13,自引:0,他引:13  
gamma-Irradiation of DNA in vitro produces two types of single strand breaks. Both types of strand breaks contain 5'-phosphate DNA termini. Some strand breaks contain 3'-phosphate termini, some contain 3'-phosphoglycolate termini (Henner, W.D., Rodriguez, L.O., Hecht, S. M., and Haseltine, W. A. (1983) J. Biol. Chem. 258, 711-713). We have studied the ability of prokaryotic enzymes of DNA metabolism to act at each of these types of gamma-ray-induced 3' termini in DNA. Neither strand breaks that terminate with 3'-phosphate nor 3'-phosphoglycolate are substrates for direct ligation by T4 DNA ligase. Neither type of gamma-ray-induced 3' terminus can be used as a primer for DNA synthesis by either Escherichia coli DNA polymerase or T4 DNA polymerase. The 3'-phosphatase activity of T4 polynucleotide kinase can convert gamma-ray-induced 3'-phosphate but not 3'-phosphoglycolate termini to 3'-hydroxyl termini that can then serve as primers for DNA polymerase. E. coli alkaline phosphatase is also unable to hydrolyze 3'-phosphoglycolate groups. The 3'-5' exonuclease actions of E. coli DNA polymerase I and T4 DNA polymerase do not degrade DNA strands that have either type of gamma-ray-induced 3' terminus. E. coli exonuclease III can hydrolyze DNA with gamma-ray-induced 3'-phosphate or 3'-phosphoglycolate termini or with DNase I-induced 3'-hydroxyl termini. The initial action of exonuclease III at 3' termini of ionizing radiation-induced DNA fragments is to remove the 3' terminal phosphate or phosphoglycolate to yield a fragment of the same nucleotide length that has a 3'-hydroxyl terminus. These results suggest that repair of ionizing radiation-induced strand breaks may proceed via the sequential action of exonuclease, DNA polymerase, and DNA ligase. The possible role of exonuclease III in repair of gamma-radiation-induced strand breaks is discussed.  相似文献   

20.
An enzyme that plays an important role in the repair of oxidative DNA damage is the 3'-phosphodiesterase. This activity, which repairs damaged DNA 3'-termini,can be detected using several available biochemical assays. We present a method to detect 3'-phosphodiesterase activity of renatured proteins immobilized in polyacrylamide gels. The model substrate, labeled with [alpha-32P]dCTP, contains 3'-phosphoglycolate termini produced by bleomycin-catalyzed cleavage of the self-complementary alternating copolymer poly(dGdC). The DNA substrate is incorporated into the gel matrix during standard SDS-PAGE. Active 3'-phosphodiesterase enzymes are detected visibly by the loss of radioactivity at a position corresponding to the mobility of the enzyme during SDS-PAGE. Using this procedure, two Escherichia coli 3'-phosphodiesterases, exonuclease III and endonuclease IV, are readily detected in crude cell extracts or as homogeneous purified proteins. Extracts of mutant cells lack activity at the positions of exonuclease III and endonuclease IV but retain activity in the position of a much larger protein (Mr approximately 100 kDa). The identification of this novel 100 kDa E.coli 3'-phosphodiesterase demonstrates the potential value of the activity gel method described here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号