首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative splicing of α-tropomyosin (α-TM) involves mutually exclusive selection of exons 2 and 3. Selection of exon 2 in smooth muscle (SM) cells is due to inhibition of exon 3, which requires both binding sites for polypyrimidine tract-binding protein as well as UGC (or CUG) repeat elements on both sides of exon 3. Point mutations or substitutions of the UGC-containing upstream regulatory element (URE) with other UGC elements disrupted the α-TM splicing pattern in transfected cells. Multimerisation of the URE caused enhanced exon skipping in SM and various non-SM cells. In the presence of multiple UREs the degree of splicing regulation was decreased due to the high levels of exon skipping in non-SM cell lines. These results suggest that the URE is not an intrinsically SM- specific element, but that its functional strength is fine tuned to exploit differences in the activities of regulatory factors between SM and other cell types. Co-transfection of tropomyosin reporters with members of the CUG-binding protein family, which are candidate URE-binding proteins, indicated that these factors do not mediate repression of tropomyosin exon 3.  相似文献   

2.
Splicing of exons 2 and 3 of a-tropomyosin (TM) involves mutually exclusive selection of either exon 3, which occurs in most cells, or of exon 2 in smooth muscle (SM) cells. The SM-specific selection of exon 2 results from the inhibition of exon 3. At least two essential cis-acting elements are required for exon 3 inhibition, the upstream and downstream regulatory elements (URE and DRE). These elements are essential for repression of TM exon 3 in SM cells, and also mediate a low level of repression of exon 3 in an in vitro 5' splice site competition assay in HeLa extracts. Here, we show that the DRE consists of at least two discrete components, a short region containing a number of UGC motifs, and an essential pyrimidine-rich tract (DY). We show that the specific sequence of the DY element is important and that DY is able to bind to factors in HeLa nuclear extracts that mediate a low background level of exon 3 skipping. Deletion of a sequence within DY identified as an optimal binding site for PTB impairs (1) regulation of splicing in vivo, (2) skipping of exon 3 in an in vitro 5' splice site competition, (3) the ability of DY competitors to affect the 5' splice site competition in vitro, and (4) binding of PTB to DY. Addition of recombinant PTB to in vitro splicing reactions is able to partially reverse the effects of the DY competitor RNA. The data are consistent with a model for regulation of TM splicing that involves the participation of both tissue-specific and general inhibitory factors and in which PTB plays a role in repressing both splice sites of exon 3.  相似文献   

3.
Regulated switching of the mutually exclusive exons 2 and 3 of alpha-tropomyosin (TM) involves repression of exon 3 in smooth muscle cells. Polypyrimidine tract-binding protein (PTB) is necessary but not sufficient for regulation of TM splicing. Raver1 was identified in two-hybrid screens by its interactions with the cytoskeletal proteins actinin and vinculin, and was also found to interact with PTB. Consistent with these interactions raver1 can be localized in either the nucleus or cytoplasm. Here we show that raver1 is able to promote the smooth muscle-specific alternative splicing of TM by enhancing PTB-mediated repression of exon 3. This activity of raver1 is dependent upon characterized PTB-binding regulatory elements and upon a region of raver1 necessary for interaction with PTB. Heterologous recruitment of raver1, or just its C-terminus, induced very high levels of exon 3 skipping, bypassing the usual need for PTB binding sites downstream of exon 3. This suggests a novel mechanism for PTB-mediated splicing repression involving recruitment of raver1 as a potent splicing co-repressor.  相似文献   

4.
5.
Mouse telokin and SM22 promoters have previously been shown to direct smooth muscle cell-specific expression of transgenes in vivo in adult mice. However, the activity of these promoters is highly dependent on the integration site of the transgene. In the current study, we found that the ectopic expression of telokin promoter transgenes could be abolished by flanking the transgene with insulator elements from the H19 gene. However, the insulator elements did not increase the proportion of mouse lines that exhibited consistent, detectable levels of transgene expression. In contrast, when transgenes were targeted to the hprt locus, both telokin and SM22 promoters resulted in reproducible patterns and levels of transgene expression in all lines of mice examined. Telokin promoter transgene expression was restricted to smooth muscle tissues in adult and embryonic mice. As reported previously, SM22 transgenes were expressed at high levels specifically in arterial smooth muscle cells; however, in contrast to randomly integrated transgenes, the hprt-targeted SM22 transgenes were also expressed at high levels in smooth muscle cells in veins, bladder, and gallbladder. Using hprt-targeted transgenes, we further analyzed elements within the telokin promoter required for tissue specific activity in vivo. Analysis of these transgenes revealed that the CArG element in the telokin promoter is required for promoter activity in all tissues and that the CArG element and adjacent AT-rich region are sufficient to drive transgene expression in bladder but not intestinal smooth muscle cells. visceral smooth muscle; development; myosin light chain kinase; embryos; CArG element  相似文献   

6.
Exons 2 and 3 of alpha-tropomyosin are spliced in a strict mutually exclusive manner. Exon 3 is a default choice, being selected in almost all cell types where the gene is expressed. The default selection arises from a competition between the two exons, in which the stronger branch point/pyrimidine tract elements of exon 3 win. Exon 2 is selected predominantly or exclusively only in smooth muscle cells. We show here that the basis for the smooth muscle-specific switching of exon selection is inhibition of exon 3. Exon 3 is still skipped with smooth muscle specificity, even in the absence of exon 2. We have defined two conserved sequence elements, one in each of the introns flanking exon 3, that are essential for this regulation. Mutation of either element severely impairs regulated suppression of exon 3. No other exon or intron sequences appear to be necessary for regulation. We have also demonstrated skipping of exon 3 that is dependent upon both regulatory elements in an in vitro splicing assay. We further show that both splice sites of exon 3 must be inhibited in a concerted fashion to switch to selection of exon 2. This may relate to the requirement for negative elements on both sides of the exon.  相似文献   

7.
Alternative splicing of human cystic fibrosis transmembrane conductance regulator (CFTR) exon 9 is regulated by a combination of cis-acting elements distributed through the exon and both flanking introns (IVS8 and IVS9). Several studies have identified in the IVS8 intron 3' splice site a regulatory element that is composed of a polymorphic (TG)m(T)n repeated sequence. At present, no cellular factors have been identified that recognize this element. We have identified TDP-43, a nuclear protein not previously described to bind RNA, as the factor binding specifically to the (TG)m sequence. Transient TDP-43 overexpression in Hep3B cells results in an increase in exon 9 skipping. This effect is more pronounced with concomitant overexpression of SR proteins. Antisense inhibition of endogenous TDP-43 expression results in increased inclusion of exon 9, providing a new therapeutic target to correct aberrant splicing of exon 9 in CF patients. The clinical and biological relevance of this finding in vivo is demonstrated by our characterization of a CF patient carrying a TG10T9(DeltaF508)/TG13T3(wt) genotype leading to a disease-causing high proportion of exon 9 skipping.  相似文献   

8.
Alternative splicing of pre-mRNA is a commonly used mechanism to regulate gene expression in higher eukaryotes. However, with the exception of regulated cascades in Drosophila, the cis-acting elements and the trans-acting factors that control tissue- and/or developmentally regulated splicing remain largely unidentified. Cis-acting elements that control smooth muscle-specific repression of exon 3 of alpha-tropomyosin (alpha-TM) have been identified recently and consist of two regions that flank this exon. Deletion of either element causes misregulated splicing of alpha-TM in transfected smooth muscle cells. In experiments designed to characterize essential sequences within each element and the factors that interact with these sequences, we have identified two overlapping sequences within the downstream regulatory element (DRE) that are identical to binding sites for polypyrimidine tract binding protein (PTB) that were identified using iterative selection techniques. Mutation of these sites caused aberrant splicing regulation in transfected smooth muscle cells. In addition, sequences identical to high-affinity PTB binding sites were also detected upstream of exon 3 and mutation of these sites also resulted in misregulation of splicing in vivo, suggesting that PTB binding to specific sequences flanking exon 3 is responsible, in part, for the repression of exon 3. Consistent with this hypothesis, UV crosslinking and equilibrium binding assays confirm that the same mutations that cause misregulated splicing also disrupt PTB binding to RNA.  相似文献   

9.
Muscleblind-like 1 (MBNL1) is a splicing regulator that controls developmentally regulated alternative splicing of a large number of exons including exon 11 of the Insulin Receptor (IR) gene and exon 5 of the cardiac Troponin T (cTNT) gene. There are three paralogs of MBNL in humans, all of which promote IR exon 11 inclusion and cTNT exon 5 skipping. Here, we identify a cluster of three binding sequences located downstream of IR exon 11 that constitute the MBNL1 response element and a weaker response element in the upstream intron. In addition, we used sequential deletions to define the functional domains of MBNL1 and MBNL3. We demonstrate that the regions required for splicing regulation are separate from the two pairs of zinc-finger RNA-binding domains. MBNL1 and MBNL3 contain core regulatory regions for both activation and repression located within an 80-amino-acid segment located downstream of the N-terminal zinc-finger pair. Deletions of these regions abolished regulation without preventing RNA binding. These domains have common features with the CUG-BP and ETR3-like Factor (CELF) family of splicing regulators. These results have identified protein domains required for splicing repression and activation and provide insight into the mechanism of splicing regulation by MBNL proteins.  相似文献   

10.
Splicing of fibroblast growth factor receptor 2 (FGFR2) alternative exons IIIb and IIIc is regulated by the auxiliary RNA cis-element ISE/ISS-3 that promotes splicing of exon IIIb and silencing of exon IIIc. Using RNA affinity chromatography, we have identified heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a splicing regulatory factor that binds to ISE/ISS-3 in a sequence-specific manner. Overexpression of hnRNP M promoted exon IIIc skipping in a cell line that normally includes it, and association of hnRNP M with ISE/ISS-3 was shown to contribute to this splicing regulatory function. Thus hnRNP M, along with other members of the hnRNP family of RNA-binding proteins, plays a combinatorial role in regulation of FGFR2 alternative splicing. We also determined that hnRNP M can affect the splicing of several other alternatively spliced exons. This activity of hnRNP M included the ability not only to induce exon skipping but also to promote exon inclusion. This is the first report demonstrating a role for this abundant hnRNP family member in alternative splicing in mammals and suggests that this protein may broadly contribute to the fidelity of splice site recognition and alternative splicing regulation.  相似文献   

11.
12.
Alternative splicing of cardiac troponin T (cTNT) exon 5 undergoes a developmentally regulated switch such that exon inclusion predominates in embryonic, but not adult, striated muscle. We previously described four muscle-specific splicing enhancers (MSEs) within introns flanking exon 5 in chicken cTNT that are both necessary and sufficient for exon inclusion in embryonic muscle. We also demonstrated that CUG-binding protein (CUG-BP) binds a conserved CUG motif within a human cTNT MSE and positively regulates MSE-dependent exon inclusion. Here we report that CUG-BP is one of a novel family of developmentally regulated RNA binding proteins that includes embryonically lethal abnormal vision-type RNA binding protein 3 (ETR-3). This family, which we call CELF proteins for CUG-BP- and ETR-3-like factors, specifically bound MSE-containing RNAs in vitro and activated MSE-dependent exon inclusion of cTNT minigenes in vivo. The expression of two CELF proteins is highly restricted to brain. CUG-BP, ETR-3, and CELF4 are more broadly expressed, and expression is developmentally regulated in striated muscle and brain. Changes in the level of expression and isoforms of ETR-3 in two different developmental systems correlated with regulated changes in cTNT splicing. A switch from cTNT exon skipping to inclusion tightly correlated with induction of ETR-3 protein expression during differentiation of C2C12 myoblasts. During heart development, the switch in cTNT splicing correlated with a transition in ETR-3 protein isoforms. We propose that ETR-3 is a major regulator of cTNT alternative splicing and that the CELF family plays an important regulatory role in cell-specific alternative splicing during normal development and disease.  相似文献   

13.
Polypyrimidine tract binding protein (PTB) acts as a regulatory repressor of a large number of alternatively spliced exons, often requiring multiple binding sites in order to repress splicing. In one case, cooperative binding of PTB has been shown to accompany repression. The SM exon of the alpha-actinin pre-mRNA is also repressed by PTB, leading to inclusion of the alternative upstream NM exon. The SM exon has a distant branch point located 386 nt upstream of the exon with an adjacent 26 nucleotide pyrimidine tract. Here we have analyzed PTB binding to the NM and SM exon region of the alpha-actinin pre-mRNA. We find that three regions of the intron bind PTB, including the 3' end of the polypyrimidine tract (PPT) and two additional regions between the PPT and the SM exon. The downstream PTB binding sites are essential for full repression and promote binding of PTB to the PPT with a consequent reduction in U2AF(65) binding. Our results are consistent with a repressive mechanism in which cooperative binding of PTB to the PPT competes with binding of U2AF(65), thereby specifically blocking splicing of the SM exon.  相似文献   

14.
Alternative splicing plays an important role in the control of apoptosis. A number of genes related to apoptosis undergo alternative splicing. Among them, the apoptotic regulator Bcl-x produces two major isoforms, Bcl-xL and Bcl-xS, through the alternative splicing of exon 2 in its pre-mRNA. These isoforms have antagonistic function in apoptotic pathway; Bcl-xL is pro-apoptotic, while Bcl-xS is anti-apoptotic. The balanced ratio of two isoforms is important for cell survival. However, regulatory mechanisms of Bcl-x splicing remain poorly understood. Using a mini-gene system, we have found that a 105 nt exonic region (E3b) located within exon 3 affects exon 2 splicing in the Bcl-x gene. Further deletion and mutagenesis studies demonstrate that this 105 nt sequence contains various functional elements which promote skipping of exon 2b. One of these elements forms a stem-loop structure that stimulates skipping of exon 2b. Furthermore our results prove that the stem-loop structure functions as an enhancer in general pre-mRNA splicing. We conclude that we have identified a cis-regulatory element in exon 3 that affects splicing of exon 2 in the Bcl-x gene. This element could be potentially targeted to alter the ratio of Bcl-xL and Bcl-xS for treatment of tumors through an apoptotic pathway.  相似文献   

15.
16.
Fox-1 is a regulator of tissue-specific splicing, via binding to the element (U)GCAUG in mRNA precursors, in muscles and neuronal cells. Fox-1 can regulate splicing positively or negatively, most likely depending on where it binds relative to the regulated exon. In cases where the (U)GCAUG element lies in an intron upstream of the alternative exon, Fox-1 protein functions as a splicing repressor to induce exon skipping. Here we report the mechanism of exon skipping regulated by Fox-1, using the hF1γ gene as a model system. We found that Fox-1 induces exon 9 skipping by repressing splicing of the downstream intron 9 via binding to the GCAUG repressor elements located in the upstream intron 8. In vitro splicing analyses showed that Fox-1 prevents formation of the pre-spliceosomal early (E) complex on intron 9. In addition, we located a region of the Fox-1 protein that is required for inducing exon skipping. Taken together, our data show a novel mechanism of how RNA-binding proteins regulate alternative splicing.  相似文献   

17.
The alternative exon 5 of the striated muscle-specific cardiac troponin T (cTNT) gene is included in mRNA from embryonic skeletal and cardiac muscle and excluded in mRNA from the adult. The embryonic splicing pattern is reproduced in primary skeletal muscle cultures for both the endogenous gene and transiently transfected minigenes, whereas in nonmuscle cell lines, minigenes express a default exon skipping pattern. Using this experimental system, we previously showed that a purine-rich splicing enhancer in the alternative exon functions as a constitutive splicing element but not as a target for factors regulating cell-specific splicing. In this study, we identify four intron elements, one located upstream,and three located downstream of the alternative exon, which act in a positive manner to mediate the embryonic splicing pattern of exon inclusion. Synergistic interactions between at least three of the four elements are necessary and sufficient to regulate splicing of a heterologous alternative exon and heterologous splice sites. Mutations in these elements prevent activation of exon inclusion in muscle cells but do not affect the default level of exon inclusion in nonmuscle cells. Therefore, these elements function as muscle-specific splicing enhancers (MSEs) and are the first muscle-specific positive-acting splicing elements to be described. One MSE located downstream from the alternative exon is conserved in the rat and chicken cTNT genes. A related sequence is found in a third muscle-specific gene, that encoding skeletal troponin T, downstream from an alternative exon with a developmental pattern of alternative splicing similar to that of rat and chicken cTNT. Therefore, the MSEs identified in the cTNT gene may play a role in developmentally regulated alternative splicing in a number of different genes.  相似文献   

18.
Inclusion of cardiac troponin T (cTNT) exon 5 in embryonic muscle requires conserved flanking intronic elements (MSEs). ETR-3, a member of the CELF family, binds U/G motifs in two MSEs and directly activates exon inclusion in vitro. Binding and activation by ETR-3 are directly antagonized by polypyrimidine tract binding protein (PTB). We use dominant-negative mutants to demonstrate that endogenous CELF and PTB activities are required for MSE-dependent activation and repression in muscle and nonmuscle cells, respectively. Combined use of CELF and PTB dominant-negative mutants provides an in vivo demonstration that antagonistic splicing activities exist within the same cells. We conclude that cell-specific regulation results from the dominance of one among actively competing regulatory states rather than modulation of a nonregulated default state.  相似文献   

19.
The Xenopus alphafast-tropomyosin gene contains in its central part a set of mutually exclusive exons, designated 6A and 6B, which are incorporated into mRNA encoding, respectively, nonmuscle and muscle tropomyosins. In this study, we show that usage of both exons is strictly regulated during development, exon 6A being used in the oocyte and nonmuscle tissues of the embryo, while exon 6B is used in muscle tissues. An approach of transient embryo transgenesis was developed to study the mechanisms involved in the splice site choice during development. We demonstrate that a-tropomyosin minigenes driven by tissue-specific promoters that target gene expression in nonmuscle and muscle tissues recapitulate the splicing pattern of the endogenous gene. A mutational analysis showed that regulation occurred at both exons 6A and 6B in muscle and nonmuscle tissues. In this context, we have identified an element located in the intron downstream of 6A that participates in the recognition of the weak 5' splice site of exon 6A and the repression of exon 6B in nonmuscle cells.  相似文献   

20.
Titin, a sarcomeric protein expressed primarily in striated muscles, is responsible for maintaining the structure and biomechanical properties of muscle cells. Cardiac titin undergoes developmental size reduction from 3.7 megadaltons in neonates to primarily 2.97 megadaltons in the adult. This size reduction results from gradually increased exon skipping between exons 50 and 219 of titin mRNA. Our previous study reported that Rbm20 is the splicing factor responsible for this process. In this work, we investigated its molecular mechanism. We demonstrate that Rbm20 mediates exon skipping by binding to titin pre-mRNA to repress the splicing of some regions; the exons/introns in these Rbm20-repressed regions are ultimately skipped. Rbm20 was also found to mediate intron retention and exon shuffling. The two Rbm20 speckles found in nuclei from muscle tissues were identified as aggregates of Rbm20 protein on the partially processed titin pre-mRNAs. Cooperative repression and alternative 3′ splice site selection were found to be used by Rbm20 to skip different subsets of titin exons, and the splicing pathway selected depended on the ratio of Rbm20 to other splicing factors that vary with tissue type and developmental age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号