首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA encoding a novel multispecific organic anion transporter, OAT4, was isolated from a human kidney cDNA library. The OAT4 cDNA consisted of 2210 base pairs that encoded a 550-amino acid residue protein with 12 putative membrane-spanning domains. The amino acid sequence of OAT4 showed 38 to 44% identity to those of other members of the OAT family. Northern blot analysis revealed that OAT4 mRNA is abundantly expressed in the placenta as well as in the kidney. When expressed in Xenopus oocytes, OAT4 mediated the high affinity transport of estrone sulfate (K(m) = 1.01 microM) and dehydroepiandrosterone sulfate (K(m) = 0.63 microM) in a sodium-independent manner. OAT4 also mediated the transport of ochratoxin A. OAT4-mediated transport of estrone sulfate was inhibited by several sulfate conjugates, such as p-nitrophenyl sulfate, alpha-naphthyl sulfate, beta-estradiol sulfate, and 4-methylumbelliferyl sulfate. By contrast, glucuronide conjugates showed little or no inhibitory effect on the OAT4-mediated transport of estrone sulfate. OAT4 interacted with chemically heterogeneous anionic compounds, such as nonsteroidal anti-inflammatory drugs, diuretics, sulfobromophthalein, penicillin G, and bile salts, whereas tetraethylammonium, an organic cation, did not. OAT4 is the first member of the multispecific organic anion transporter family, which is expressed abundantly in the placenta. OAT4 might be responsible for the elimination and detoxification of harmful anionic substances from the fetus.  相似文献   

2.
Role of human organic anion transporter 4 in the transport of ochratoxin A   总被引:6,自引:0,他引:6  
The purpose of this study was to investigate the characteristics of ochratoxin A (OTA) transport by multispecific human organic anion transporter 4 (hOAT4) using mouse proximal tubule cells stably transfected with hOAT4 (S(2) hOAT4). Immunohistochemical analysis revealed that hOAT4 protein was localized to the apical side of the proximal tubule. S(2) hOAT4 expressed hOAT4 protein in the apical side as well as basolateral side and the cells were cultured on the plastic dish for experiments. S(2) hOAT4 exhibited a time- and concentration-dependent, and a saturable increase in OTA uptake, with an apparent K(m) value of 22.9+/-2.44 microM. The OTA uptakes were inhibited by several substrates for the OATs. Probenecid, piroxicam, octanoate and citrinin inhibited OTA uptake by hOAT4 in a competitive manner (K(i)=44.4-336.4 microM), with the following order of potency: probenecid > piroxicam > octanoate >citrinin. The efflux of OTA by S(2) hOAT4 was higher than that by mock. Addition of OTA resulted in slight decrease in viability of S(2) hOAT4 compared with mock. These results indicate that hOAT4 mediates the high-affinity transport of OTA on the apical side of the proximal tubule, whereas the transport characteristics of OTA are distinct from those by basolateral OATs.  相似文献   

3.
The purpose of this study was to investigate the characteristics of ochratoxin A (OTA) transport by multispecific human organic anion transporters (hOAT1 and hOAT3, respectively) using the second segment of proximal tubule (S2) cells from mice stably expressing hOAT1 and hOAT3 (S2 hOAT1 and S2 hOAT3). S2 hOAT1 and S2 hOAT3 exhibited a time- and dose-dependent, and a saturable increase in uptake of [3H]-OTA, with apparent Km values of 0.42 microM (hOAT1) and 0.75 microM (hOAT3). These OTA uptakes were inhibited by several substrates for the OATs. Para-aminohippuric acid (PAH), probenecid, piroxicam, octanoate and citrinin inhibited [3H]-OTA uptake by hOAT1 and hOAT3 in a competitive manner (Ki = 4.29-3080 microM), with the following order of potency: probenecid > octanoate > PAH > piroxicam > citrinin for hOAT1; probenecid > piroxicam > octanoate> citrinin > PAH for hOAT3. These results indicate that hOAT1, as well as hOAT3, mediates a high-affinity transport of OTA on the basolateral side of the proximal tubule, but hOAT1- and hOAT3-mediated OTA transport are differently influenced by the substrates for the OATs. These pharmacological characteristics of hOAT1 and hOAT3 may be significantly related with the events in the development of OTA-induced nephrotoxicity in the human kidney.  相似文献   

4.
Feng B  Dresser MJ  Shu Y  Johns SJ  Giacomini KM 《Biochemistry》2001,40(18):5511-5520
Organic anion transporters (OATs) and organic cation transporters (OCTs) mediate the flux of xenobiotics across the plasma membranes of epithelia. Substrates of OATs generally carry negative charge(s) whereas substrates of OCTs are cations. The goal of this study was to determine the domains and amino acid residues essential for recognition and transport of organic anions by the rat organic anion transporter, rOAT3. An rOAT3/rOCT1 chimera containing transmembrane domains 1-5 of rOAT3 and 6-12 of rOCT1 retained the specificity of rOCT1, suggesting that residues involved in substrate recognition reside within the carboxyl-terminal half of these transporters. Mutagenesis of a conserved basic amino acid residue, arginine 454 to aspartic acid (R454D), revealed that this amino acid is required for organic anion transport. The uptakes of p-aminohippurate (PAH), estrone sulfate, and ochratoxin A were approximately 10-, approximately 48-, and approximately 32-fold enhanced in oocytes expressing rOAT3 and were only approximately 2-, approximately 6-, and approximately 5-fold enhanced for R454D. Similarly, mutagenesis of the conserved lysine 370 to alanine (K370A) suggested that K370 is important for organic anion transport. Interestingly, the charge specificity of the double mutant, R454DK370A, was reversed in comparison to rOAT3-R454DK370A preferentially transported the organic cation, MPP(+), in comparison to PAH (MPP(+) uptake/PAH uptake = 3.21 for the double mutant vs 0.037 for rOAT3). These data indicate that arginine 454 and lysine 370 are essential for the anion specificity of rOAT3. The studies provide the first insights into the molecular determinants that are critical for recognition and translocation of organic anions by a member of the organic anion transporter family.  相似文献   

5.
Several important physiological functions are regulated by cortisol. Previously, we demonstrated the involvement of human organic anion transporter 3 (hOAT3) in cortisol release. In the present study, we investigated the influence of dehydroepiandrosterone sulfate (DHEA-S) and estrone sulfate on cortisol release in a human adrenocortical cell line (NCI-H295R) compared with forskolin stimulation. Additionally, we examined the impact of forskolin and DHEA-S on the expression of key enzymes in steroid biosynthesis and expression of hOAT3 and -4 in NCI-H295R cells. The cortisol release was increased 10-fold after 24-h incubation with DHEA-S, but incubation with estrone sulfate did not show any significant change in cortisol release. When cells were incubated with DHEA-S in the presence of forskolin, an additive influence of DHEA-S stimulation of cortisol was recorded over forskolin alone. The 24-h stimulation of NCI-H295R cells with forskolin increased the expression of steroidogenic acute regulatory protein (StAR), CYP17, CYP21A2, and CYP11A1, whereas only StAR mRNA expression was increased significantly by incubation with DHEA-S. Immunofluorescence analyses revealed strongly elevated expression of hOAT3 by forskolin as well as by DHEA-S stimulation. We conclude that the increased cortisol release of adrenocortical cells by DHEA-S and forskolin stimulation is probably due to high expression of the key enzymes of steroid biosynthesis and hOAT3.  相似文献   

6.
Hagos Y  Braun IM  Krick W  Burckhardt G  Bahn A 《Biochimie》2005,87(5):421-424
With the cloning of pig renal organic anion transporter 1 (pOAT1) (Biochimie 84 (2002) 1219) we set up a model system for comparative studies of cloned and natively isolated membrane located transport proteins. Meanwhile, another transport protein involved in p-aminohippurate (PAH) uptake on the basolateral side of the proximal tubule cells was identified, designated organic anion transporter 3 (OAT3). To explore the contribution of pOAT1 to the PAH clearance in comparison to OAT3, it was the aim of this study to extend our model by cloning of the pig ortholog of OAT3. Sequence comparisons of human organic anion transporter 3 (hOAT3) with the expressed sequence tag (EST) database revealed a clone and partial sequence of the pig renal organic anion transporter 3 (pOAT3) ortholog. Sequencing of the entire open reading frame resulted in a protein of 543 amino acid residues encoded by 1632 base pairs (EMBL Acc. No. AJ587003). It showed high homologies of 81%, 80%, 76%, and 77% to the human, rabbit, rat, and mouse OAT3, respectively. A functional characterization of pOAT3 in Xenopus laevis oocytes yielded an apparent Km (Kt) for [3H]estrone sulfate of 7.8 +/- 1.3 microM. Moreover, pOAT3 mediated [3H]estrone sulfate uptake was almost abolished by 0.5 mM of glutarate, dehydroepiandosterone sulfate, or probenecid consistent with the hallmarks of OAT3 function.  相似文献   

7.
8.
The objective of this study was to evaluate 1) whether non single nucleotide polymorphisms-coding (non-cSNP) in the apolipoprotein E gene (APOE) identified by resequencing studies contribute to statistically explaining dyslipidemia if variations in the two cSNPs in exon 4 that define the 2, 3, and 4 alleles are ignored, and 2) whether the contribution of these additional SNPs persists when variations in the cSNPs are considered. We used an ecological, multiple-population, data-mining strategy to identify single-SNP and two-SNP genotypes that distinguish between high and low levels of plasma lipids in three training samples, European-Americans from Rochester, MN, African-Americans from Jackson, MS, and Europeans from North Karelia, Finland. We found that a pair of SNPs located in the 5' region define genotypes A560T832/A560T832, A560T832/A560G832, and A560T832/T560T832, which distinguish between high and low levels of HDL-cholesterol (HDL-C), triglycerides (TG), and/or total cholesterol (T-C). The A560T832/- genotypes predicted high TG and high T-C in both genders in a large independent test sample from Copenhagen, Denmark. Prediction of high T-C in the Danish females was dependent on genotypes defined by the cSNPs. Our study suggests that both regulatory and structural variations should be considered when evaluating the utility of APOE for predicting dyslipidemia in the population at large.  相似文献   

9.
The human organic anion transporting polypeptide-C (OATP-C) (gene SLC21A6) is a liver-specific transporter importantly involved in the hepatocellular uptake of a variety of endogenous and foreign chemicals. In this study, we demonstrate the presence of multiple functionally relevant single-nucleotide polymorphisms (SNPs) in OATP-C in a population of African- and European-Americans. Moreover, examination of 14 nonsynonymous polymorphisms indicated that genotypic frequencies were dependent on race. Functional assessment of 16 OATP-C alleles in vitro revealed that several variants exhibited markedly reduced uptake of the OATP-C substrates estrone sulfate and estradiol 17beta-d-glucuronide. Specifically, alterations in transport were associated with SNPs that introduce amino acid changes within the transmembrane-spanning domains (T217C (Phe-73 --> Leu), T245C (Val-82 --> Ala), T521C (Val-174 --> Ala), and T1058C (Ile-353 --> Thr)) and also with those that modify extracellular loop 5 (A1294G (Asn-432 --> Asp), A1385G (Asp-462 --> Gly), and A1463C (Gly-488 --> Ala)). Cell surface biotinylation experiments indicated that the altered transport activity of some OATP-C variants was due, in part, to decreased plasma membrane expression. Given the relatively high genotypic frequency of the T521C (14%) transition in European-Americans and the G1463C (9%) transversion in African-Americans, SNPs in OATP-C may represent a heretofore unrecognized factor influencing drug disposition.  相似文献   

10.
We have previously cloned rat MRP3 as an inducible transporter in the liver (Hirohashi, T., Suzuki, H., Ito, K., Ogawa, K., Kume, K., Shimizu, T., and Sugiyama, Y. (1998) Mol. Pharmacol. 53, 1068-1075). In the present study, the function of rat MRP3 was investigated using membrane vesicles isolated from LLC-PK1 and HeLa cell population transfected with corresponding cDNA. The ATP-dependent uptake of both 17beta estradiol 17-beta-D-glucuronide ([3H]E217betaG) and glucuronide of [14C] 6-hydroxy-5, 7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040), but not that of [3H]leukotriene C4 and [3H]2, 4-dinitrophenyl-S-glutathione, was markedly stimulated by MRP3 transfection in both cell lines. The Km and Vmax values for the uptake of [3H]E217betaG were 67 +/- 14 microM and 415 +/- 73 pmol/min/mg of protein, respectively, for MRP3-expressing membrane vesicles and 3.0 +/- 0.7 microM and 3.4 +/- 0.4 pmol/min/mg of protein, respectively, for the endogenous transporter expressed on HeLa cells. [3H]E217betaG had also a similar Km value for MRP3 when LLC-PK1 cells were used as the host. All glucuronide conjugates examined (E3040 glucuronide, 4-methylumbelliferone glucuronide, and naphthyl glucuronide) and methotrexate inhibited MRP3-mediated [3H]E217betaG transport in LLC-PK1 cells. Moreover, [3H]methotrexate was transported via MRP3. The inhibitory effect of estrone sulfate, [3H]2,4-dinitrophenyl-S-glutathione, and [3H]leukotriene C4 was moderate or minimal, whereas N-acetyl-2,4-dinitrophenylcysteine had no effect on the uptake of [3H]E217betaG. The uptake of [3H]E217betaG was enhanced by E3040 sulfate and 4-methylumbelliferone sulfate. Thus we were able to demonstrate that several kinds of organic anions are transported via MRP3, although the substrate specificity of MRP3 differs from that of MRP1 and cMOAT/MRP2 in that glutathione conjugates are poor substrates for MRP3.  相似文献   

11.
We studied six clinical isolates of Candida albicans. All six isolates showed high level resistance to fluconazole (minimum inhibitory concentrations 64 microg/ml) with varying degrees of cross-resistance to other azoles but not to amphotericin B. Neither higher dosage nor upregulation of the gene encoding the cytochrome P- 450 lanosterol 14 alpha-demethylase (CYP51A1 or P-450LDM) was responsible for fluconazole resistance. The resistant and the susceptible isolates accumulated similar amounts of azoles. To examine whether resistance to fluconazole in these clinical isolates of C. albicans is mediated by an altered target of azole action, we cloned the structural gene encoding P-450LDM from the fluconazole resistant isolates. The amino acid sequences of the P-450LDMs from the isolates were deduced from the gene sequences and compared to the P-450LDM sequence of the fluconazole-susceptible C. albicans B311. The enzymes from the clinical isolates showed 2 to 7 amino acid variations scattered across the molecules encompassing 10 different loci. One-half of the amino acid changes obtained were conserved substitutions (E116D, K143R, E266D, D278E, R287K) compared to the susceptible strain. Non-conserved substitutions were T128K, R267H, S405F, G450E and G464S, three of which are in and around the hemebinding region of the molecule. R287K is the only amino acid change that was found in all six clinical isolates. One or more of these mutational alterations may lead to the expression of an azole-resistant enzyme.  相似文献   

12.
17 beta-Hydroxysteroid oxidoreductase, as well as estrone sulfate and dehydroepiandrosterone sulfate sulfatases, were found in the plasma membrane of microvilli of the fetal syncytiotrophoblast. Because of their location, these enzymes may influence feto-maternal transfer of steroids circulating as sulfates, the utilization of sulfated estrogen precursors and the proportion of estrone and estradiol delivered towards fetal and maternal circulations. Microvillar vesicles isolated from human term placentas were disrupted in hypotonic medium to obtain a membrane preparation. A fraction of the estradiol 17 beta-oxidoreductase (E2DH) activity in the vesicle remained associated to the membrane after disruption and treatment with 2 M NaCl. The membrane-associated activity was resistant to inhibition with trypsin and did not react with a polyclonal antibody which neutralized cytosolic E2DH activity. The membrane-associated enzyme was solubilized with a cholate-glycerol buffer solution and purified on Sephadex G-100. The estimated molecular weight of the solubilized enzyme (137 kDa) appears to correspond to a tetramer since it was found to be about twice the size of the cytosolic enzyme. Both enzymes focused in polyacrylamide gels at pH 5.2. The Km relative to E2 of the membrane-associated E2DH (1.3 microM) differs from those of mitochondrial (0.43 microM), microsomal (0.69 microM) and cytosolic (11 microM) fractions. The cytosolic and the microvillar membrane associated 17 beta-hydroxysteroid oxidoreductases also differ in their specificity for C18 and C19 steroid substrates and in their pH dependence patterns. Sulfatases acting on estrone sulfate and dehydroepiandrosterone sulfate in microvillar membranes were insensitive to trypsin and as resistant to washes with 2 M NaCl as alkaline phosphatase. This data indicated that steroid sulfatases are also microvillar membrane associated enzymes of potential physiologic importance in the hydrolysis of estrogen precursors.  相似文献   

13.
Novel SNPs of the Bovine PRLR Gene Associated with Milk Production Traits   总被引:2,自引:0,他引:2  
Lü A  Hu X  Chen H  Dong Y  Zhang Y  Wang X 《Biochemical genetics》2011,49(3-4):177-189
The single nucleotide polymorphisms (SNPs) within exon 10 of the prolactin receptor gene (PRLR) were detected in Chinese Holstein cows using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods, and their genetic effects on milk production traits were evaluated in this study. Two newly detected SNPs (g.9206G→A and g.9681C→T) caused amino acid variations E378K and A536V, respectively, which were then preliminarily predicted at the topological level. Statistical results indicated that the two SNPs were significantly associated with milk yields, and cows with the combined genotype GGCC showed superior milk performance. A putative phosphorylation site was identified at residue 378K ([ST]-×-[RK]), which offers a partial explanation for the associations. These results suggest that the two novel SNPs within exon 10 of the PRLR gene associated with milk production traits are useful genetic markers in a selection program for Holstein dairy cattle.  相似文献   

14.
Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-human immunodeficiency virus therapeutics, anti-tumor drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT4 is abundantly expressed in the placenta. In the current study, we examined the regulation of hOAT4 by pregnancy-specific hormones progesterone (P(4)) and 17beta-estradiol (E(2)) and by protein kinase C (PKC) in human placental BeWo cells. P(4) induced a time- and concentration-dependent downregulation of hOAT4 transport activity, whereas E(2) had no effect on hOAT4 function. The downregulation of hOAT4 activity by P(4) mainly resulted from a decreased cell surface expression without a change in total cell expression of the transporter, kinetically revealed as a decreased V(max) without significant change in K(m). Activation of PKC by phorbol 12,13-dibutyrate also resulted in an inhibition of hOAT4 activity through a decreased cell surface expression of the transporter. However, P(4)-induced downregulation of hOAT4 activity could not be prevented by treating hOAT4-expressing cells with the PKC inhibitor staurosporine. We concluded that both P(4) and activation of PKC inhibited hOAT4 activity through redistribution of the transporter from cell surface to the intracellular compartments. However, P(4) regulates hOAT4 activity by mechanisms independent of PKC pathway.  相似文献   

15.
Organic anion transporters (OATs) play a critical role in the handling of endogenous and exogenous organic anions by excretory and barrier tissues. Little is known about the OAT three-dimensional structure or substrate/protein interactions involved in transport. In this investigation, a theoretical three-dimensional model was generated for human OAT1 (hOAT1) based on fold recognition to the crystal structure of the glycerol 3-phosphate transporter (GlpT) from Escherichia coli. GlpT and hOAT1 share several sequence motifs as major facilitator superfamily members. The structural hOAT1 model shows that helices 5, 7, 8, 10, and 11 surround an electronegative putative active site ( approximately 830A(3)). The site opens to the cytoplasm and is surrounded by three residues not previously examined for function (Tyr(230) (domain 5) and Lys(431) and Phe(438) (domain 10)). Effects of these residues on p-aminohippurate (PAH) and cidofovir transport were assessed by point mutations in a Xenopus oocyte expression system. Membrane protein expression was severely limited for the Y230A mutant. For the K431A and F438A mutants, [(3)H]PAH uptake was less than 30% of wild-type hOAT1 uptake after protein expression correction. Reduced V(max) values for the F438A mutant confirmed lower protein expression. In addition, the F438A mutant exhibited an increased affinity for cidofovir but was not significantly different for PAH. Differences in handling of PAH and cidofovir were also observed for the Y230F mutant. Little uptake was determined for cidofovir, whereas PAH uptake was similar to wild-type hOAT1. Therefore, the hOAT1 structural model has identified two new residues, Tyr(230) and Phe(438), which are important for substrate/protein interactions.  相似文献   

16.
Xi D  Wu M  Fan Y  Huo Y  Leng J  Gou X  Mao H  Deng W 《Gene》2012,498(2):259-263
The Chinese yakow is the offspring of yak (Bos grunniens) and Yellow cattle (Bos taurus). The melanocortin 1receptor gene (MC1R) plays a crucial role in determining coat colour of mammals. To investigate the relationship of polymorphism of the MC1R with coat colour in the Chinese yakow, the coding sequence (CDS) and the flanking region of MC1R were sequenced from 84 Chinese yakow samples and compared with the sequences of the MC1R from other bovid species. A fragment of 1134 base pair (bp) sequences including the full CDS (954bp) and parts of the 5'- and 3'-untranslated regions (162 and 18bp, respectively) of the Chineseyakow MC1R were obtained. A total of 13 single nucleotide polymorphisms (SNPs) including 4 SNPs (T-129C, A-127C, C-106T, G-1A) in the 5'-untranslated region and 9 SNPs (C201T, T206C, C340A, C375T, T663C, G714C, C870T, G871A and T890C) in the CDS were identified, revealing high genetic variability. Four novel SNPs including T206C, G714C, C870T and T890C, which have not been reported previously in bovid species, were retrieved. Within 9 coding SNPs, C201T, C375T, T663C and C870T were silent mutations, while T206C, C340A, G714C, G871A and T890C were mis-sense mutations, corresponding to amino acid changes p.L69P, p.Q114K, p.K238N, p.A291N and p.I297T, respectively. Amino acid sequences alignment showed a more than 96% similarity with other ruminates. However, three classical bovine MC1R loci the E(D), E(+) and e were not retrieved in the Chinese yakow, indicating other genes or factors could be involved in affecting coat colour in this species.  相似文献   

17.
Catecholestrogen sulfation: possible role in carcinogenesis   总被引:7,自引:0,他引:7  
A growing body of evidence supports the hypothesis that estrogens can be carcinogens as a result of their conversion to genotoxins after biotransformation to form the catecholestrogens (CEs) 2-hydroxyestrone (2-OHE1), 2-hydroxyestradiol (2-OHE2), 4-hydroxyestrone (4-OHE1) and 4-hydroxyestradiol (4-OHE2). CEs can then undergo further metabolism to form quinones that interact with DNA to form either stable or depurinating adducts. These events could potentially be interrupted by the sulfate conjugation of both the parent estrogens and/or the CEs. We set out to determine whether CEs can serve as substrates for sulfate conjugation, and-if so-which of the growing family of human sulfotransferase (SULT) isoforms are capable of catalyzing those reactions. We determined apparent K(m) values for 10 recombinant human SULT isoforms, as well as the three most common allozymes for SULT1A1 and SULT1A2, with 2-OHE1, 2-OHE2, 4-OHE1, and 4-OHE2, and with the endogenous estrogens, estrone (E1) and 17beta-estradiol (E2), as substrates. With the exception of SULT1B1, SULT1C1, and SULT4A1, all of the human SULTs studied catalyzed the sulfate conjugation of CEs. SULT1E1 had the lowest apparent K(m) values, 0.31, 0.18, 0.27, and 0.22 microM for 4-OHE1, 4-OHE2, 2-OHE1, and 2-OHE2, respectively. These results demonstrate that SULTs can catalyze the sulfate conjugation of CEs, and they raise the possibility that individual variation in this pathway for estrogen and CE metabolism as a result of common genetic polymorphisms could represent a risk factor for estrogen-dependent carcinogenesis.  相似文献   

18.
A protein which binds dehydroepiandrosterone sulfate and estrone sulfate was detected in the cytosolic fraction of female Guinea-pig liver. It is characterized by a molecular mass of 14,400 Da, its affinity for DHEA sulfate (KD = 8.8 microM) and estrone sulfate (KD = 8.5 microM), and its lack of affinity for free steroids such as dehydroepiandrosterone or estrone. It is eluted by gel filtration on Sephadex G-50 simultaneously with the inhibitor of microsomal DHEA sulfatase recently described by some of us. This protein could be implicated in the intracellular transport or in the metabolism of sulfated steroids.  相似文献   

19.
1. Hepatic arylsulfatase C (ASC) and steroid sulfatase (SS) from six of eleven mammals (rat, dog, baboon, cow, goat, and sheep) coeluted from DEAE-Sephacel as a single anionic species. A minor cationic peak of ASC and SS activity was also recovered from solubilized microsomes derived from the domestic cat. Characterization of the cationic activities indicated they were most likely contributed by a protein structurally related to the anionic isozyme. Properties of ASC and SS activities occurring in these seven species were most consistent with the presence of both activities in the same enzyme. 2. Guinea-pig liver SS activity was partitioned between an alkylsulfatase (hydrolyzing dehydroepiandrosterone sulfate (DHEAS)) and an arylsulfatase (hydrolyzing both estrone sulfate (E1S) and 4-methylumbelliferyl sulfate (4MUS) at a common active site). These enzymes were physically separable by ion-exchange chromatography and possessed distinct immunological and chemical properties. 3. Porcine, squirrel, and human livers possessed a major isozyme of ASC that lacked both E1S- and DHEAS-sulfatase activities. The human hepatic ASC was separable from SS by electrophoresis and was partially resolved from SS by DEAE-Sephacel chromatography. The ASC isozyme lacking SS activity was heat-labile in all three species.  相似文献   

20.
Feng B  Shu Y  Giacomini KM 《Biochemistry》2002,41(28):8941-8947
Organic anion transporters (OATs, SLC21) are important in the excretion of endogenous and exogenous compounds in the kidney. The rat organic anion transporter, rOAT3, mediates the transport of organic anions such as p-aminohippurate (PAH) and estrone sulfate as well as the basic compound, cimetidine. In the present study, we examined the role of conserved transmembrane aromatic amino acid residues of rOAT3 in substrate recognition and transport. Alanine scanning followed by amino acid replacements was used to construct mutants of rOAT3. The uptake of model compounds was studied in Xenopus laevis oocytes expressing the mutant transporters. We observed that four mutants in transmembrane domain 7 (TMD 7), W334A, F335A, Y341A, and Y342Q, and one mutant in transmembrane domain 8 (TMD 8), F362S, exhibited a less than 2-fold enhanced uptake of PAH and cimetidine in comparison to wild-type rOAT3, which exhibited a 16-fold enhanced uptake of PAH and an 8-fold enhanced uptake of cimetidine. Estrone sulfate uptake in oocytes expressing any one of these five mutants remained at least 8-fold enhanced. The data suggest that the five residues, W334, F335, Y341, Y342, and F362, contribute differently to the transport of the small hydrophilic organic substrates PAH and cimetidine in comparison to the large hydrophobic organic substrate estrone sulfate. The effects of side chains of these five residues on transporter functions were also evaluated by constructing conservative mutations. We observed that the residues contribute to PAH and cimetidine transport in different ways: the -OH group of Y342, the indole ring of W334, and the aromatic rings of F335, Y341, and F362 are important for PAH and cimetidine transport by rOAT3. These data suggest that there is an aromatic pocket composed mainly of residues in TMD 7 in the translocation pathway of rOAT3, which is important for the transport of PAH and cimetidine. Aromatic residues in this pocket may interact directly with substrates of rOAT3 through hydrogen bonds and pi-pi interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号