首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied lateral associations of microtubule walls by electron microscopy and image analysis. In negative stain they are observed as composite sheets having two or more domains usually facing in opposite directions. Thin sections show a variety of complex tubular arrays including structures resembling flagellar doublets and centriolar triplets. It appears that protofilaments can combine in two distinct modes, one leading to microtubule walls, the other forming junctions between walls. Both kinds of bonds seem to be inherent properties of tubulin and not of microtubule-associated protein.  相似文献   

2.
In higher eukaryotic cells, microtubules within metaphase and anaphase spindles undergo poleward flux, the slow, poleward movement of tubulin subunits through the spindle microtubule lattice. Although a number of studies have documented this phenomenon across a wide range of model systems, the possibility of poleward flux before nuclear envelope breakdown (NEB) has not been examined. Using a mammalian cell line expressing photoactivatable green fluorescent protein (GFP)-tubulin, we observe microtubule motion, both toward and away from centrosomes, at a wide range of rates (0.5–4.5 μm/min) in prophase cells. Rapid microtubule motion in both directions is dynein dependent. In contrast, slow microtubule motion, which occurs at rates consistent with metaphase flux, is insensitive to inhibition of dynein but sensitive to perturbation of Eg5 and Kif2a, two proteins with previously documented roles in flux. Our results demonstrate that microtubules in prophase cells are unexpectedly dynamic and that a subpopulation of these microtubules shows motion that is consistent with flux. We propose that the marked reduction in rate and directionality of microtubule motion from prophase to metaphase results from changes in microtubule organization during spindle formation.  相似文献   

3.
Microtubule dynamics have key roles in mitotic spindle assembly and chromosome movement [1]. Fast turnover of spindle microtubules at metaphase and polewards flux of microtubules (polewards movement of the microtubule lattice with depolymerization at the poles) at both metaphase and anaphase have been observed in mammalian cells [2]. Imaging spindle dynamics in genetically tractable yeasts is now possible using green fluorescent protein (GFP)-tagging of tubulin and sites on chromosomes [3] [4] [5] [6] [7] [8]. We used photobleaching of GFP-labeled tubulin to observe microtubule dynamics in the fission yeast Schizosaccharomyces pombe. Photobleaching did not perturb progress through mitosis. Bleached marks made on the spindle during metaphase recovered their fluorescence rapidly, indicating fast microtubule turnover. Recovery was spatially non-uniform, but we found no evidence for polewards flux. Marks made during anaphase B did not recover fluorescence, and were observed to slide away from each other at the same rate as spindle elongation. Fast microtubule turnover at metaphase and a switch to stable microtubules at anaphase suggest the existence of a cell-cycle-regulated molecular switch that controls microtubule dynamics and that may be conserved in evolution. Unlike the situation for vertebrate spindles, microtubule depolymerization at poles and polewards flux may not occur in S. pombe mitosis. We conclude that GFP-tubulin photobleaching in conjunction with mutant cells should aid research on molecular mechanisms causing and regulating dynamics.  相似文献   

4.
Chromosomes move toward mitotic spindle poles by a Pacman-flux mechanism linked to microtubule depolymerization: chromosomes actively depolymerize attached microtubule plus ends (Pacman) while being reeled in to spindle poles by the continual poleward flow of tubulin subunits driven by minus-end depolymerization (flux). We report that Pacman-flux in Drosophila melanogaster incorporates the activities of three different microtubule severing enzymes, Spastin, Fidgetin, and Katanin. Spastin and Fidgetin are utilized to stimulate microtubule minus-end depolymerization and flux. Both proteins concentrate at centrosomes, where they catalyze the turnover of gamma-tubulin, consistent with the hypothesis that they exert their influence by releasing stabilizing gamma-tubulin ring complexes from minus ends. In contrast, Katanin appears to function primarily on anaphase chromosomes, where it stimulates microtubule plus-end depolymerization and Pacman-based chromatid motility. Collectively, these findings reveal novel and significant roles for microtubule severing within the spindle and broaden our understanding of the molecular machinery used to move chromosomes.  相似文献   

5.
CRMP-2 binds to tubulin heterodimers to promote microtubule assembly   总被引:1,自引:0,他引:1  
Regulated increase in the formation of microtubule arrays is thought to be important for axonal growth. Collapsin response mediator protein-2 (CRMP-2) is a mammalian homologue of UNC-33, mutations in which result in abnormal axon termination. We recently demonstrated that CRMP-2 is critical for axonal differentiation. Here, we identify two activities of CRMP-2: tubulin-heterodimer binding and the promotion of microtubule assembly. CRMP-2 bound tubulin dimers with higher affinity than it bound microtubules. Association of CRMP-2 with microtubules was enhanced by tubulin polymerization in the presence of CRMP-2. The binding property of CRMP-2 with tubulin was apparently distinct from that of Tau, which preferentially bound microtubules. In neurons, overexpression of CRMP-2 promoted axonal growth and branching. A mutant of CRMP-2, lacking the region responsible for microtubule assembly, inhibited axonal growth and branching in a dominant-negative manner. Taken together, our results suggest that CRMP-2 regulates axonal growth and branching as a partner of the tubulin heterodimer, in a different fashion from traditional MAPs.  相似文献   

6.
HURP is a newly discovered microtubule-associated protein (MAP) required for correct spindle formation both in vitro and in vivo. HURP protein is highly charged with few predicted secondary and tertiary folding domains. Here we explore the effect of HURP on pure tubulin, and describe its ability to induce a new conformation of tubulin sheets that wrap around the ends of intact microtubules, thereby forming two concentric tubes. The inner tube is a normal microtubule, while the outer one is a sheet composed of tubulin protofilaments that wind around the inner tube with a 42.5° inclination. We used cryo-electron microscopy and unidirectional surface shadowing to elucidate the structure and conformation of HURP-induced tubulin sheets and their interaction with the inner microtubule. These studies clarified that HURP-induced sheets are composed of anti-parallel protofilaments exhibiting P2 symmetry. HURP is a unique MAP that not only stabilizes and bundles microtubules, but also polymerizes free tubulin into a new configuration.  相似文献   

7.
Vertebrate tubulin is encoded by a multigene family that produces distinct gene products, or isotypes, of both the alpha- and beta-tubulin subunits. The isotype sequences are conserved across species supporting the hypothesis that different isotypes subserve different functions. To date, however, most studies have demonstrated that tubulin isotypes are freely interchangeable and coassemble into all classes of microtubules. We now report that, in contrast to other isotypes, overexpression of a mouse class V beta-tubulin cDNA in mammalian cells produces a strong, dose-dependent disruption of microtubule organization, increased microtubule fragmentation, and a concomitant reduction in cellular microtubule polymer levels. These changes also disrupt mitotic spindle assembly and block cell proliferation. Consistent with diminished microtubule assembly, there is an increased tolerance for the microtubule stabilizing drug, paclitaxel, which is able to reverse many of the effects of class V beta-tubulin overexpression. Moreover, transfected cells selected in paclitaxel exhibit increased expression of class V beta-tubulin, indicating that this isotype is responsible for the drug resistance. The results show that class V beta-tubulin is functionally distinct from other tubulin isotypes and imparts unique properties on the microtubules into which it incorporates.  相似文献   

8.
Summary During the development of the spermatogenous cells, the pteridophyteCeratopteris richardii produces three structurally well-defined microtubule organizing centers (MTOCs). The blepharoplast, a spherical body that occurs during the last two spermatogenous divisions, organizes two microtubule (MT) arrays, one associated with a nuclear indentation and the other that organizes the spindle apparatus for the final divisions. After the last spermatogenous division, the blepharoplast reorganizes to produce two new putative MTOCs: the lamellar strip (LS) of the multilayered structure (MLS), which apparently organizes the spline microtubule array, and an amorphous zone (AM), that connects the basal bodies. Thin and semi-thin sections of this tissue were probed with antisera which recognize MTOCs in lower eukaryotes and animals to determine if any of these structures contain MTOC-associated proteins or epitopes recognized by monoclonal antisera. Gamma tubulin antibodies, which recognizeonly the minus ends of MTs in mammalian cells, label along the MT in all arrays found in the pteridophyte spermatogenous cells. Kinetochore MTs are unlabelled near the kinetochore, however. The monoclonal antibodies MPM-2 and C-9, that recognize centrosomal and nuclear epitopes in mammalian cells, label the interphase nucleus, the cytoplasm of mitotic cells, and the blepharoplast during both nuclear indentation and spindle formation. Double labelling of the blepharoplast-containing cells with anti-tubulin and either MPM-2 or C-9 reveals that the blepharoplast-associated fluorescence is the focus of the tubulin arrays. Centrin labels the reorganizing blepharoplast, the MLS, the AM, and a stellate pattern in the transition region of the flagella. These data indicate the usefulness of the structurally well-recognized MTOCs in pteridophyte spermatogenous cells in investigation of land plant MTOCs.  相似文献   

9.
Multifunctional structural proteins belonging to the 4.1 family are components of nuclei, spindles, and centrosomes in vertebrate cells. Here we report that 4.1 is critical for spindle assembly and the formation of centrosome-nucleated and motor-dependent self-organized microtubule asters in metaphase-arrested Xenopus egg extracts. Immunodepletion of 4.1 disrupted microtubule arrays and mislocalized the spindle pole protein NuMA. Remarkably, assembly was completely rescued by supplementation with a recombinant 4.1R isoform. We identified two 4.1 domains critical for its function in microtubule polymerization and organization utilizing dominant negative peptides. The 4.1 spectrin-actin binding domain or NuMA binding C-terminal domain peptides caused morphologically disorganized structures. Control peptides with low homology or variant spectrin-actin binding domain peptides that were incapable of binding actin had no deleterious effects. Unexpectedly, the addition of C-terminal domain peptides with reduced NuMA binding caused severe microtubule destabilization in extracts, dramatically inhibiting aster and spindle assembly and also depolymerizing preformed structures. However, the mutant C-terminal peptides did not directly inhibit or destabilize microtubule polymerization from pure tubulin in a microtubule pelleting assay. Our data showing that 4.1 is a crucial factor for assembly and maintenance of mitotic spindles and self-organized and centrosome-nucleated microtubule asters indicates that 4.1 is involved in regulating both microtubule dynamics and organization. These investigations underscore an important functional context for protein 4.1 in microtubule morphogenesis and highlight a previously unappreciated role for 4.1 in cell division.  相似文献   

10.
During metaphase and anaphase in newt lung cells, tubulin subunits within the kinetochore microtubule (kMT) lattice flux slowly poleward as kMTs depolymerize at their minus-ends within in the pole. Very little is known about how and where the force that moves the tubulin subunits poleward is generated and what function it serves during mitosis. We found that treatment with the drug taxol (10 microM) caused separated centrosomes in metaphase newt lung cells to move toward one another with an average velocity of 0.89 microns/min, until the interpolar distance was reduced by 22-62%. This taxol-induced spindle shortening occurred as kMTs between the chromosomes and the poles shortened. Photoactivation of fluorescent marks on kMTs revealed that taxol inhibited kinetochore microtubule assembly/disassembly at kinetochores, whereas minus-end MT disassembly continued at a rate typical of poleward flux in untreated metaphase cells. This poleward flux was strong enough to stretch the centromeric chromatin between sister kinetochores as much as it is stretched in control metaphase cells. In anaphase, taxol blocked kMT disassembly/assembly at the kinetochore whereas minus-end disassembly continued at a rate similar to flux in control cells (approximately 0.2 microns/min). These results reveal that the mechanism for kMT poleward flux 1) is not dependent on kMT plus-end dynamics and 2) produces pulling forces capable of generating tension across the centromeres of bioriented chromosomes.  相似文献   

11.
The microtubule cytoskeleton is assembled from a finite pool of α,β-tubulin, the size of which is controlled by an autoregulation mechanism. Cells also tightly regulate the architecture and dynamic behavior of microtubule arrays. Here, we discuss progress in our understanding of how tubulin autoregulation is achieved and highlight work showing that tubulin, in its unassembled state, is relevant for regulating the formation and organization of microtubules. Emerging evidence suggests that tubulin regulates microtubule-associated proteins and kinesin motors that are critical for microtubule nucleation, dynamics, and function. These relationships create feedback loops that connect the tubulin assembly cycle to the organization and dynamics of microtubule networks. We term this concept the ‘tubulin economy’, which emphasizes the idea that tubulin is a resource that can be deployed for the immediate purpose of creating polymers, or alternatively as a signaling molecule that has more far-reaching consequences for the organization of microtubule arrays.  相似文献   

12.
We investigated the mechanism of poleward microtubule flux in the mitotic spindle by generating spindle subassemblies in Xenopus egg extracts in vitro and assaying their ability to flux by photoactivation of fluorescence and low-light multichannel fluorescence video-microscopy. We find that monopolar intermediates of in vitro spindle assembly (half-spindles) exhibit normal poleward flux, as do astral microtubule arrays induced by the addition of dimethyl sulfoxide to egg extracts in the absence of both chromosomes and conventional centrosomes. Immunodepletion of the kinesin-related microtubule motor protein Eg5, a candidate flux motor, suggests that Eg5 is not required for flux. These results suggest that poleward flux is a basic element of microtubule behavior exhibited by even simple self-organized microtubule arrays and presumably underlies the most elementary levels of spindle morphogenesis.  相似文献   

13.
To study tubulin polymerization and microtubule sliding during spindle elongation in vitro, we developed a method of uncoupling the two processes. When isolated diatom spindles were incubated with biotinylated tubulin (biot-tb) without ATP, biot-tb was incorporated into two regions flanking the zone of microtubule overlap, but the spindles did not elongate. After biot-tb was removed, spindle elongation was initiated by addition of ATP. The incorporated biot-tb was found in the midzone between the original half-spindles. The extent and rate of elongation were increased by preincubation in biot-tb. Serial section reconstruction of spindles elongating in tubulin and ATP showed that the average length of half-spindle microtubules increased due to growth of microtubules from the ends of native microtubules. The characteristic packing pattern between antiparallel microtubules was retained even in the "new" overlap region. Our results suggest that the forces required for spindle elongation are generated by enzymes in the overlap zone that mediate the sliding apart of antiparallel microtubules, and that tubulin polymerization does not contribute to force generation. Changes in the extent of microtubule overlap during spindle elongation were affected by tubulin and ATP concentration in the incubation medium. Spindles continued to elongate even after the overlap zone was composed entirely of newly polymerized microtubules, suggesting that the enzyme responsible for microtubule translocation either is bound to a matrix in the spindle midzone, or else can move on one microtubule toward the spindle midzone and push another microtubule of opposite polarity toward the pole.  相似文献   

14.
15.
We have used local fluorescence photoactivation to mark the lattice of spindle microtubules during anaphase A in Xenopus extract spindles. We find that both poleward spindle microtubule flux and anaphase A chromosome movement occur at similar rates (~2 μm/min). This result suggests that poleward microtubule flux, coupled to microtubule depolymerization near the spindle poles, is the predominant mechanism for anaphase A in Xenopus egg extracts. In contrast, in vertebrate somatic cells a “Pacman” kinetochore mechanism, coupled to microtubule depolymerization near the kinetochore, predominates during anaphase A. Consistent with the conclusion from fluorescence photoactivation analysis, both anaphase A chromosome movement and poleward spindle microtubule flux respond similarly to pharmacological perturbations in Xenopus extracts. Furthermore, the pharmacological profile of anaphase A in Xenopus extracts differs from the previously established profile for anaphase A in vertebrate somatic cells. The difference between these profiles is consistent with poleward microtubule flux playing the predominant role in anaphase chromosome movement in Xenopus extracts, but not in vertebrate somatic cells. We discuss the possible biological implications of the existence of two distinct anaphase A mechanisms and their differential contributions to poleward chromosome movement in different cell types.  相似文献   

16.
《The Journal of cell biology》1995,131(6):1775-1788
A Saccharomyces cerevisiae gamma-tubulin-related gene, TUB4, has been characterized. The predicted amino acid sequence of the Tub4 protein (Tub4p) is 29-38% identical to members of the gamma-tubulin family. Indirect immunofluorescence experiments using a strain containing an epitope-tagged Tub4p indicate that Tub4p resides at the spindle pole body throughout the yeast cell cycle. Deletion of the TUB4 gene indicates that Tub4p is essential for yeast cell growth. Tub4p-depleted cells arrest during nuclear division; most arrested cells contain a large bud, replicated DNA, and a single nucleus. Immunofluorescence and nuclear staining experiments indicate that cells depleted of Tub4p contain defects in the organization of both cytoplasmic and nuclear microtubule arrays; such cells exhibit nuclear migration failure, defects in spindle formation, and/or aberrantly long cytoplasmic microtubule arrays. These data indicate that the S. cerevisiae gamma- tubulin protein is an important SPB component that organizes both cytoplasmic and nuclear microtubule arrays.  相似文献   

17.
Fidgetin is a member of the AAA protein superfamily with important roles in mammalian development. Here we show that human Fidgetin is a potent microtubule severing and depolymerizing the enzyme used to regulate mitotic spindle architecture, dynamics and anaphase A. In vitro, recombinant human Fidgetin severs taxol-stabilized microtubules along their length and promotes depolymerization, primarily from their minus-ends. In cells, human Fidgetin targets to centrosomes, and its depletion with siRNA significantly reduces the velocity of poleward tubulin flux and anaphase A chromatid-to-pole motion. In addition, the loss of Fidgetin induces a microtubule-dependent enlargement of mitotic centrosomes and an increase in the number and length of astral microtubules. Based on these data, we propose that human Fidgetin actively suppresses microtubule growth from and attachment to centrosomes.  相似文献   

18.
Fidgetin is a member of the AAA protein superfamily with important roles in mammalian development. Here we show that human Fidgetin is a potent microtubule severing and depolymerizing the enzyme used to regulate mitotic spindle architecture, dynamics and anaphase A. In vitro, recombinant human Fidgetin severs taxol-stabilized microtubules along their length and promotes depolymerization, primarily from their minus-ends. In cells, human Fidgetin targets to centrosomes, and its depletion with siRNA significantly reduces the velocity of poleward tubulin flux and anaphase A chromatid-to-pole motion. In addition, the loss of Fidgetin induces a microtubule-dependent enlargement of mitotic centrosomes and an increase in the number and length of astral microtubules. Based on these data, we propose that human Fidgetin actively suppresses microtubule growth from and attachment to centrosomes.  相似文献   

19.
20.
Regulation of microtubule nucleation sites is an essential step in microtubule organization. Cortical microtubule arrays in green plant cells at inter-phase are organized in a distinct manner—the array is formed in the absence of previously recognized organelles for microtubule nucleation, for example the centrosome and spindle pole body. Microtubules in the cortical array were recently found to be nucleated as branches on pre-existing microtubules via recruitment of cytosolic γ-tubulin. In this review we briefly summarize the mechanism of microtubule-dependent microtubule nucleation and discuss a possible role of this mechanism in other cellular processes and their evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号