首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production.  相似文献   

2.
Akirin是近来发现的在骨骼肌生长发育和免疫反应中具有重要作用的基因。简要综述了akirin基因与免疫反应、骨骼肌发育和再生、myostatin基因和NF-κB因子的关系,同时分析了禽类akirin2基因的研究进展,最后对akirin基因的应用前景也进行了简单探讨,以期为akirin基因在医学和畜牧业中的深入研究和应用提供参考。  相似文献   

3.
TGF-β and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.  相似文献   

4.
5.
The Akirin2 gene is a nuclear factor and is considered as a potential functional candidate gene for meat quality. To better understand the structures and functions of Akirin2 gene, the cDNA of the Tianfu goat Akirin2 gene was cloned. Sequence analysis showed that the Tianfu goat Akirin2 cDNA full coding sequence (CDS) contains 579 bp nucleotides that encode 192 amino acids. A phylogenic tree of the Akirin2 protein sequence from the Tianfu goat and other species revealed that the Tianfu goat Akirin2 was closely related with cattle and sheep Akirin2. RT-qPCR analysis showed that Akirin2 was expressed in the myocardium, liver, spleen, lung, kidney, leg muscle, abdominal muscle and the longissimus dorsi muscle. Especially, high expression levels of Akirin2 were detected in the spleen, lung, and kidney whereas lower expression levels were seen in the liver, myocardium, leg muscle, abdominal muscle and longissimus dorsi muscle. Temporal mRNA expression showed that Akirin2 expression levels in the longissimus dorsi muscle, first increased then decreased from day 1 to month 12. Western blotting results showed that the Akirin2 protein was only detected in the lung and three skeletal muscle tissues.  相似文献   

6.
7.
8.
Myostatin (GDF-8) inhibits the activation, proliferation, and differentiation of myogenic satellite cells. The relative importance of this growth factor is demonstrated in myostatin-null mice and cattle possessing defective myostatin genes. These defects result in greatly enhanced musculature. In the present study, we examined the effect of myostatin on turkey myogenic satellite cells and embryonic myoblasts. Compared with controls (P<0.05), proliferation of both turkey embryonic myoblasts and satellite cells was inhibited between 26 and 45% in serum-free medium containing 20 ng/mL myostatin. While individual turkey satellite cell clones differed in their responsiveness to myostatin, there were no significant differences in the responsiveness of fast and slow growing cells as groups (P>0.05). A slow growing clone that exhibited the greatest response to myostatin also exhibited the greatest depression of differentiation with this growth factor (P<0.05). All other turkey satellite cell clones exhibited similar responses to the differentiation depressing effects of myostatin (P>0.05). However, myostatin had no effect on differentiation of turkey embryonic myoblasts (P>0.05). When exposed to myostatin, 4 of 6 proliferating clones and all differentiating clones increased their expression of decorin, a growth inhibitor (P<0.05). The present study demonstrates that myostatin inhibits the proliferation and differentiation of satellite cells and suggests a role for decorin in myostatin action in muscle development.  相似文献   

9.
Muscle satellite cells are essential for muscle growth and regeneration and their morphology, behavior and gene expression have been extensively studied. However, the mechanisms involved in their proliferation and differentiation remain elusive. Six1 and Six4 proteins were expressed in the nuclei of myofibers of adult mice and the numbers of myoblasts positive for Six1 and Six4 increased during regeneration of skeletal muscles. Six1 and Six4 were expressed in quiescent, activated and differentiated muscle satellite cells isolated from adult skeletal muscle. Overexpression of Six4 and Six5 repressed the proliferation and differentiation of satellite cells. Conversely, knockdown of Six5 resulted in augmented proliferation, and that of Six4 inhibited differentiation. Muscle satellite cells isolated from Six4+/Six5/ mice proliferated to higher cell density though their differentiation was not altered. Meanwhile, overproduction of Six1 repressed proliferation and promoted differentiation of satellite cells. In addition, Six4 and Six5 repressed, while Six1 activated myogenin expression, suggesting that the differential regulation of myogenin expression is responsible for the differential effects of Six genes. The results indicated the involvement of Six genes in the behavior of satellite cells and identified Six genes as potential target for manipulation of proliferation and differentiation of muscle satellite cells for therapeutic applications.  相似文献   

10.
During the development and regeneration of skeletal muscle,many growth factors,such asbasic fibroblast growth factor (bFGF,FGF-2) and myostatin,have been shown to play regulating roles.bFGF contributes to promote proliferation and to inhibit differentiation of skeletal muscle,whereas myostatinplays a series of contrasting roles.In order to elucidate whether the expression of bFGF has any relationshipwith the expression of myostatin in skeletal muscle cells,we constructed a eukaryotic expression vector forthe expression of exogenous bFGF in murine C2C12 myoblasts.Quantitative RT-PCR assays indicated thatwith the increase of the expression of exogenous bFGF gene,the expression of endogenous myostatin genewas suppressed at mRNA level and protein level.  相似文献   

11.
12.
Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-beta1 and decorin. We discovered that myostatin stimulated fibroblast proliferation in vitro and induced its differentiation into myofibroblasts. We further found that transforming growth factor-beta1 stimulated myostatin expression, and conversely, myostatin stimulated transforming growth factor-beta1 secretion in C2C12 myoblasts. Decorin, a small leucine-rich proteoglycan, was found to neutralize the effects of myostatin in both fibroblasts and myoblasts. Moreover, decorin up-regulated the expression of follistatin, an antagonist of myostatin. The results of in vivo experiments showed that myostatin knock-out mice developed significantly less fibrosis and displayed better skeletal muscle regeneration when compared with wild-type mice at 2 and 4 weeks following gastrocnemius muscle laceration injury. In wild-type mice, we found that transforming growth factor-beta1 and myostatin co-localize in myofibers in the early stages of injury. Recombinant myostatin protein stimulated myofibers to express transforming growth factor-beta1 in skeletal muscles at early time points following injection. In summary, these findings define a fibrogenic property of myostatin and suggest the existence of co-regulatory relationships between transforming growth factor-beta1, myostatin, and decorin.  相似文献   

13.
14.
15.
Prolonged absence of myostatin reduces sarcopenia   总被引:1,自引:0,他引:1  
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength. Parabiotic experiments show that circulating factors positively influence the proliferation and regenerative capacity of satellite cells in aged mice. In addition, we believe that negative regulators of muscle mass also serve to balance the signals that influence satellite cell activation and regeneration capacity with ageing. Myostatin, a negative regulator of pre- and postnatal myogenesis, inhibits satellite cell activation and muscle regeneration postnatally. To investigate the role of myostatin during age-related sarcopenia, we examined muscle mass and regeneration in young and old myostatin-null mice. Young myostatin-null muscle fibers were characterized by massive hypertrophy and hyperplasia and an increase in type IIB fibers, resulting in a more glycolytic muscle. With ageing, wild-type muscle became increasingly oxidative and fiber atrophy was prominent. In contrast no fiber type switching was observed and atrophy was minimal in aged myostatin-null muscle. The effect of ageing on satellite cell numbers appeared minimal, however, satellite cell activation declined significantly in both wild-type and myostatin-null muscles. In young mice, lack of myostatin resulted in increased satellite cell number and activation compared to wild-type, suggesting a greater propensity to undergo myogenesis, a difference maintained in the aged mice. In addition, muscle regeneration of myostatin-null muscle following notexin injury was accelerated and fiber hypertrophy and type were recovered with regeneration, unlike in wild-type muscle. In conclusion, a lack of myostatin appears to reduce age-related sarcopenia and loss of muscle regenerative capacity.  相似文献   

16.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors.However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.  相似文献   

17.
This study attempted to dispel the confusion that exists in the understanding of the origin of myoblasts during muscle regeneration. Regenerating hamster muscle explants from cultures were studied under the EM on 4 consecutive days, after incubation. Preincubation specimens served as controls. Revelations were that euchromatic myonuclei underwent dense granulation and activation after incubation. Presumptive myoblasts (PM) lying clearly within the myofibre increased in numbers with incubation time. Some myonuclei showed partial transformation towards a PM. This study concluded that myonuclei transformed into myoblasts during the process of muscle regeneration and that the PM, produced from a myonucleus, was a stage in the development of the satellite cell (SC) in regenerating muscle. These SC, myoblasts from myonuclear origin, proliferated, fused, and formed multinucleate myotubes that matured into myofibres which replaced damaged muscle. Findings of this study may have new implications for the proposed myoblast transplant or gene transfer therapy, both of which, whilst being possible answers for muscular dystrophy, depend on a sound knowledge of muscle regeneration mechanisms.  相似文献   

18.
Although macrophages are thought to play important roles in tissue repair, the molecular mechanisms involved remain to be elucidated. Mice deficient in urokinase-type plasminogen activator (uPA-/-) exhibit decreased accumulation of macrophages following muscle injury and severely impaired muscle regeneration. We tested whether macrophage-derived uPA plays essential roles in macrophage chemotaxis and skeletal muscle regeneration. Macrophage uPA was required for chemotaxis, even when invasion through matrix was not necessary. The mechanism by which macrophage uPA promoted chemotaxis was independent of receptor binding but appeared to depend on proteolytic activity. Exogenous uPA restored chemotaxis to uPA-/- macrophages and rescued muscle regeneration in uPA-/- mice. Macrophage depletion in wild-type (WT) mice using clodronate liposomes resulted in impaired muscle regeneration, confirming that macrophages are required for efficient healing. Furthermore, transfer of WT bone marrow cells to uPA-/- mice restored macrophage accumulation and muscle regeneration. In this rescue, transferred WT cells appeared to contribute to IGF-1 expression but did not fuse to regenerating fibers. These data indicate that WT leukocytes, including macrophages, that express uPA were sufficient to rescue muscle regeneration in uPA-/- mice. Overall, the results indicate that uPA plays a fundamental role in macrophage chemotaxis and that macrophage-derived uPA promotes efficient muscle regeneration.  相似文献   

19.
Vertebrate akirin genes usually form a family with one-to-three members that regulate gene expression during the innate immune response, carcinogenesis and myogenesis. We recently established that an expanded family of eight akirin genes is conserved across salmonid fish. Here, we measured mRNA levels of the akirin family of Atlantic salmon (Salmo salar L.) during the differentiation of primary myoblasts cultured from fast-skeletal muscle. Using hierarchical clustering and correlation, the data was positioned into a network of expression profiles including twenty further genes that regulate myogenesis. akirin1(2b) was not significantly regulated during the maturation of the cell culture. akirin2(1a) and 2(1b), along with IGF-II and several igfbps, were most highly expressed in mononuclear cells, then significantly and constitutively downregulated as differentiation proceeded and myotubes formed/matured. Conversely, akirin1(1a), 1(1b), 1(2a), 2(2a) and 2(2b) were expressed at lowest levels when mononuclear cells dominated the culture and highest levels when confluent layers of myotubes were evident. However, akirin1(2a) and 2(2a) were first upregulated earlier than akirin1(1a), 1(1b) and 2(2b), when rates of myoblast proliferation were highest. Interestingly, akirin1(1b), 1(2a), 2(2a) and 2(2b) formed part of a module of co-expressed genes involved in muscle differentiation, including myod1a, myog, mef2a, 14-3-3β and 14-3-3γ. All akirin paralogues were expressed ubiquitously across ten tissues, although mRNA levels were regulated between cell-types and family members. Gene expression patterns were often highly correlated between akirin paralogues, suggesting that natural selection has maintained an intricate network of co-regulation among family members. We concluded that the Atlantic salmon akirin family performs a multifaceted role during myogenesis and has physiological functions spanning many cell-types.  相似文献   

20.
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Although patients with advanced CHF or CKD often have increased angiotensin II (Ang II) levels and cachexia and Ang II causes skeletal muscle wasting in rodents, the potential effects of Ang II on muscle regeneration are unknown. Muscle regeneration is highly dependent on the ability of a pool of muscle stem cells (satellite cells) to proliferate and to repair damaged myofibers or form new myofibers. Here we show that Ang II reduced skeletal muscle regeneration via inhibition of satellite cell (SC) proliferation. Ang II reduced the number of regenerating myofibers and decreased expression of SC proliferation/differentiation markers (MyoD, myogenin, and active-Notch) after cardiotoxin-induced muscle injury in vivo and in SCs cultured in vitro. Ang II depleted the basal pool of SCs, as detected in Myf5nLacZ/+ mice and by FACS sorting, and this effect was inhibited by Ang II AT1 receptor (AT1R) blockade and in AT1aR-null mice. AT1R was highly expressed in SCs, and Notch activation abrogated the AT1R-mediated antiproliferative effect of Ang II in cultured SCs. In mice that developed CHF postmyocardial infarction, there was skeletal muscle wasting and reduced SC numbers that were inhibited by AT1R blockade. Ang II inhibition of skeletal muscle regeneration via AT1 receptor-dependent suppression of SC Notch and MyoD signaling and proliferation is likely to play an important role in mechanisms leading to cachexia in chronic disease states such as CHF and CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号