首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
The α5β1 integrin heterodimer regulates many processes that contribute to embryonic development and angiogenesis, in both physiological and pathological contexts. As one of the major adhesion complexes on endothelial cells, it plays a vital role in adhesion and migration along the extracellular matrix. We recently showed that angiogenesis is modulated by syntaxin 6, a Golgi- and endosome-localized t-SNARE, and that it does so by regulating the post-Golgi trafficking of VEGFR2. Here we show that syntaxin 6 is also required for α5β1 integrin-mediated adhesion of endothelial cells to, and migration along, fibronectin. We demonstrate that syntaxin 6 and α5β1 integrin colocalize in EEA1-containing early endosomes, and that functional inhibition of syntaxin 6 leads to misrouting of β1 integrin to the degradation pathway (late endosomes and lysosomes) rather transport along recycling pathway from early endosomes; an increase in the pool of ubiquitinylated α5 integrin and its lysosome-dependent degradation; reduced cell spreading on fibronectin; decreased Rac1 activation; and altered Rac1 localization. Collectively, our data show that functional syntaxin 6 is required for the regulation of α5β1-mediated endothelial cell movement on fibronectin. These syntaxin 6-regulated membrane trafficking events control outside-in signaling via haptotactic and chemotactic mechanisms.  相似文献   

2.
Physiological and pathological turnover of basement membranes liberates biologically active cryptic molecules. Several collagen-derived fragments possess anti-angiogenic activity. Arresten is the 26-kDa non-collagenous domain of type IV collagen α1 chain. It functions as an efficient inhibitor of angiogenesis and tumor growth in mouse models, but its anti-angiogenic mechanism is not completely known. Here we show that arresten significantly increases apoptosis of endothelial cells in vitro by decreasing the amount of anti-apoptotic molecules of the Bcl-family; Bcl-2 and Bcl-xL. Although the pro-apoptotic effect of arresten is endothelial cell specific in vitro, in mouse tumors arresten induced apoptosis both in endothelial and tumor cells. The tumor cell apoptosis is likely an indirect effect due to the inhibition of blood vessel growth into the tumor. The active site of arresten was localized by deletion mutagenesis within the C-terminal half of the molecule. We have previously shown that arresten binds to α1β1 integrin on human umbilical vein endothelial cells. However, the microvascular endothelial cells (MLECs) are more important in the context of tumor vasculature. We show here that arresten binds also to the microvascular endothelial cells via α1β1 integrin. Furthermore, it has no effect on Matrigel neovascularization or the viability of integrin α1 null MLECs. Tumors implanted on integrin α1 deficient mice show no integrin α1 expression in the host-derived vascular endothelium, and thus arresten does not inhibit the tumor growth. Collectively, this data sheds more light into the anti-angiogenic mechanism of arresten.  相似文献   

3.
BackgroundThe large extracellular matrix protein SVEP1 mediates cell adhesion via integrin α9β1. Recent studies have identified an association between a missense variant in SVEP1 and increased risk of coronary artery disease (CAD) in humans and in mice Svep1 deficiency alters the development of atherosclerotic plaques. However how SVEP1 functionally contributes to CAD pathogenesis is not fully understood. Monocyte recruitment and differentiation to macrophages is a key step in the development of atherosclerosis. Here, we investigated the requirement for SVEP1 in this process.MethodsSVEP1 expression was measured during monocyte–macrophage differentiation in primary monocytes and THP-1 human monocytic cells. SVEP1 knockout THP-1 cell lines and the dual integrin α4β1/α9β1 inhibitor, BOP, were utilised to investigate the effect of these proteins in THP-1 cell adhesion, migration and cell spreading assays. Subsequent activation of downstream integrin signalling intermediaries was quantified by western blotting.ResultsSVEP1 gene expression increases in monocyte to macrophage differentiation in human primary monocytes and THP-1 cells. Using two SVEP1 knockout THP-1 cells we observed reduction in monocyte adhesion, migration, and cell spreading compared to control cells. Similar results were found with integrin α4β1/α9β1 inhibition. We demonstrate reduced activity of Rho and Rac1 in SVEP1 knockout THP-1 cells.ConclusionsSVEP1 regulates monocyte recruitment and differentiation phenotypes through an integrin α4β1/α9β1 dependent mechanism.General significanceThese results describe a novel role for SVEP1 in monocyte behaviour relevant to CAD pathophysiology.  相似文献   

4.
Integrin α9β1 mediates accelerated cell adhesion and migration through interactions with a number of diverse extracellular ligands. We have shown previously that it directly binds the vascular endothelial growth factors (VEGF) A, C, and D and contributes to VEGF-induced angiogenesis and lymphangiogenesis. Until now, the α9β1 binding site in VEGF has not been identified. Here, we report that the three-amino acid sequence, EYP, encoded by exon 3 of VEGF-A is essential for binding of VEGF to integrin α9β1 and induces adhesion and migration of endothelial and cancer cells. EYP is specific for α9β1 binding and neither requires nor activates VEGFR-2, the cognate receptor for VEGF-A. Following binding to EYP, integrin α9β1 transduces cell migration through direct activation of the integrin signaling intermediates Src and focal adhesion kinase. This interaction is biologically important because it mediates in vitro endothelial cell tube formation, wound healing, and cancer cell invasion. These novel findings identify EYP as a potential site for directed pharmacotherapy.  相似文献   

5.
6.
Fibronectin (FN) fibrillogenesis is an essential biological process mediated by α5β1 integrin and cellular contractile forces. Assembly of a FN matrix by activated endothelial cells occurs during angiogenic blood vessel remodeling and signaling components that control this event represent attractive therapeutic targets. Here we examined the role of individual Rho GTPases in FN matrix remodeling by selectively attenuating their expression in cultured endothelial cells. Whereas pharmacological ablation of myosin-regulated contractility abrogated matrix assembly, no significant decrease was detected in the amount of FN deposited by RhoA, RhoB-, RhoC-, Rac1-, or Cdc42-depleted cells. Rather, distinct differences in fiber arrangement were observed. Most strikingly, RhoA silenced cells assembled a fine FN meshwork beneath α5β1 integrin-based fibrillar adhesions, in the absence of classical focal adhesions and actin stress fibers, indicating that α5β1 integrin translocation and FN fibril elongation can occur in low tension states such as those encountered by newly-forming vessels in tissue. In contrast, highly contractile Cdc42-deficient cells deposited FN globules and Rac-deficient cells assembled long arrays, reflecting their increased motility. We propose that regulation of FN scaffolds by Rho GTPase signaling impacts bidirectional communications and mechanical interactions between endothelial cells and their extracellular matrix during vascular morphogenesis.  相似文献   

7.
Mammalian spermatozoa employ calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) signaling in generating flagellar beat. However, how sperm direct their movement towards the egg cells has remained elusive. Here we show that the Rho small G protein RAC1 plays an important role in controlling progressive motility, in particular average path velocity and linearity. Upon RAC1 inhibition of wild type sperm with the drug NSC23766, progressive movement is impaired. Moreover, sperm from mice homozygous for the genetically variant t-haplotype region (tw5/tw32), which are sterile, show strongly enhanced RAC1 activity in comparison to wild type (+/+) controls, and quickly become immotile in vitro. Sperm from heterozygous (t/+) males, on the other hand, display intermediate RAC1 activity, impaired progressive motility and transmission ratio distortion (TRD) in favor of t-sperm. We show that t/+-derived sperm consist of two subpopulations, highly progressive and less progressive. The majority of highly progressive sperm carry the t-haplotype, while most less progressive sperm contain the wild type (+) chromosome. Dosage-controlled RAC1 inhibition in t/+ sperm by NSC23766 rescues progressive movement of (+)-sperm in vitro, directly demonstrating that impairment of progressive motility in the latter is caused by enhanced RAC1 activity. The combined data show that RAC1 plays a pivotal role in controlling progressive motility in sperm, and that inappropriate, enhanced or reduced RAC1 activity interferes with sperm progressive movement. Differential RAC1 activity within a sperm population impairs the competitiveness of sperm cells expressing suboptimal RAC1 activity and thus their fertilization success, as demonstrated by t/+-derived sperm. In conjunction with t-haplotype triggered TRD, we propose that Rho GTPase signaling is essential for directing sperm towards the egg cells.  相似文献   

8.
The α(6)β(4) integrin promotes carcinoma invasion through its ability to promote directed migration and polarization of carcinoma cells. In this study, we explore how the α(6)β(4) integrin cooperates with lysophosphatidic acid (LPA) to activate Rho and Rac small GTPases. Through the use of dominant negative Rho constructs, C3 exotransferase, and Rho kinase inhibitor, we find that Rho is critical for LPA-dependent chemotaxis and lamellae formation. However, utilization of specific Rho isoforms depends on integrin α(6)β(4) expression status. Integrin α(6)β(4)-negative MDA-MB-435 cells utilize only RhoC for motility, whereas integrin α(6)β(4)-expressing cells utilize RhoC but additionally activate and utilize RhoA for LPA-dependent cell motility and lamellae formation. Notably, the activation of RhoA by cooperative LPA and integrin α(6)β(4) signaling requires the Rho guanine nucleotide exchange factor AKAP-Lbc. We also determine that integrin α(6)β(4) cannot activate Rac1 directly but promotes LPA-mediated Rac1 activation that is dependent on RhoA activity and de novo β(1) integrin ligation. Finally, we find that the regulation of Rac1 and RhoA in response to LPA is differentially regulated by phosphodiesterases, PKA, and phosphatidylinositol 3-kinase, thus supporting their spatially distinct compartmentalization. In summary, signaling from integrin α(6)β(4) facilitates LPA-stimulated chemotaxis through preferential activation of RhoA, which, in turn, facilitates activation of Rac1.  相似文献   

9.
Lung cancer is notorious for high morbidity and mortality around the world. Interleukin (IL)-8, a proinflammatory chemokine with tumorigenic and proangiogenic effects, promotes lung cancer cells growth and migration and contributes to cell aggressive phenotypes. Integrin αvβ6 is a receptor of transmembrane heterodimeric cell surface adhesion, and its overexpression correlates with poor survival from non–small cell lung cancer. However, the cross talk between αvβ6 and IL-8 in lung cancer has not been characterized so far. Herein, human lung cancer samples were analyzed, and it revealed that the immunohistochemical and mRNA expression of integrin αvβ6 was significantly correlated with the expression of IL-8. Furthermore, in vitro, integrin αvβ6 increased cell proliferation, migration, and invasion by impairing the expressions of MMP-2 and MMP-9 and inhibited cell apoptosis in human lung cancer cells A549 and H460. In addition, integrin αvβ6 upregulated IL-8 expression through activating MAPK/ERK signaling. The in vivo experiment showed that integrin αvβ6 promoted tumor growth in xenograft model mice by accelerating tumor volume and reducing apoptosis. Meanwhile, lung metastasis model experiment suggested that integrin αvβ6 stimulated tumor metastasis with the increase of lung/total weight and tumor nodules. Simultaneously, integrin αvβ6 upregulated IL-8 expression detected by both Western blots and immunohistochemistry, along with the activation of MAPK/ERK signaling. Overall, these data suggested that, in vitro and in vivo, integrin αvβ6 promoted lung cancer proliferation and metastasis, at least in part, through upregulation of IL-8–mediated MAPK/ERK signaling. Thus, the inhibition of integrin αvβ6 and IL-8 may be the key for the treatment of lung cancer.  相似文献   

10.
Transgenic expression of the α7 integrin can ameliorate muscle pathology in a mouse model of Duchenne muscular dystrophy (mdx/utr−/−) and thus can compensate for the loss of dystrophin in diseased mice. In spite of the beneficial effects of the α7 integrin in protecting mice from dystrophy, identification of molecular signaling events responsible for these changes remains to be established. The purpose of this study was to determine a role for signaling in the amelioration of muscular dystrophy by α7 integrin. Activation of PI3K, ILK, AKT, mTOR, p70S6K, BAD, ERK, and p38 was measured in the muscle from wild type (WT), mdx/utr−/− and α7BX2-mdx/utr−/− mice using in vitro activity assays or phosphospecific antibodies and western blotting. Significant increases in PI3K activity (47%), ILK activity (2.0-fold), mTOR (Ser2448) (57%), p70S6K (Thr389) (11.7-fold), and ERK (Thr202/Tyr204) (66%) were demonstrated in dystrophic mdx/utr−/− muscle compared to WT. A significant decrease in p38 phosphorylation (2.9-fold) was also observed. Although most of these signaling events were similar in dystrophic mdx/utr−/− mice overexpressing the α7 integrin, the AKT (Ser473):AKT ratio (2-fold vs. WT) and p70S6K phosphorylation (18-fold vs. WT) were higher in α7BX2-mdx/utr−/− compared to mdx/utr−/− mice. In addition, increased phosphorylation of BAD Serine 112 may contribute to the significant reduction in TUNEL+ cells observed in α7BX2-mdx/utr−/− mice. We conclude that the α7β1 integrin confers a protective effect in dystrophic muscle through the activation of the ILK, AKT, p70S6K and BAD signaling to promote muscle cell survival.  相似文献   

11.
Rac1 activity, polarity, lamellipodial dynamics, and directed motility are defective in keratinocytes exhibiting deficiency in β4 integrin or knockdown of the plakin protein Bullous Pemphigoid Antigen 1e (BPAG1e). The activity of Rac, formation of stable lamellipodia, and directed migration are restored in β4 integrin-deficient cells by inducing expression of a truncated form of β4 integrin, which lacks binding sites for BPAG1e and plectin. In these same cells, BPAG1e, the truncated β4 integrin, and type XVII collagen (Col XVII), a transmembrane BPAG1e-binding protein, but not plectin, colocalize along the substratum-attached surface. This finding suggested to us that Col XVII mediates the association of BPAG1e and α6β4 integrin containing the truncated β4 subunit and supports directed migration. To test these possibilities, we knocked down Col XVII expression in keratinocytes expressing both full-length and truncated β4 integrin proteins. Col XVII-knockdown keratinocytes exhibit a loss in BPAG1e-α6β4 integrin interaction, a reduction in lamellipodial stability, an impairment in directional motility, and a decrease in Rac1 activity. These defects are rescued by a mutant Col XVII protein truncated at its carboxyl terminus. In summary, our results suggest that in motile cells Col XVII recruits BPAG1e to α6β4 integrin and is necessary for activation of signaling pathways, motile behavior, and lamellipodial stability.  相似文献   

12.
The invasive and metastatic potentials of hepatocellular carcinoma are positively correlated with the expression level of α3β1 integrin, a high-affinity adhesion receptor for laminin isoforms including laminin-5. In this study, we investigated changes in the adhesive and invasive behaviors of human HCC HepG2 cells after transfection with cDNA for α3 integrin in order to elucidate the direct involvement of this integrin in these cellular processes. We introduced cDNA for splice variants of α3 integrin (α3A and α3B) into the cells, and selected two transfectant clones (HepG2-3A and HepG2-3B), which express the α3A and α3B integrins, respectively. Both transfectant cells adhered almost equally to laminin-5-coated plates in an α3 integrin-dependent manner, indicating that transfected α3Aβ1 and α3Bβ1 integrins were functionally active in these cells. The migratory and invasive potentials of the transfectant cells were assessed by scratch wound assay and in vitro chemoinvasion assay. The results demonstrated that the migration of HepG2-3A and HepG2-3B cells but not of mock transfectant (HepG2-M) cells was stimulated on the plates coated with laminin-5. Furthermore, HepG2-3A and HepG2-3B cells were found to be more invasive into laminin-5-containing matrices than were HepG2-M cells. These results strongly suggest that enhanced expression of α3β1 integrin on HCC cells is directly involved in their malignant phenotypes such as invasion and metastasis.  相似文献   

13.
Vascular endothelial growth factor (VEGF) signaling is critical for both normal and disease-associated vascular development. Dysregulated VEGF signaling has been implicated in ischemic stroke, tumor angiogenesis, and many other vascular diseases. VEGF signals through several effectors, including the Rho family of small GTPases. As a member of this family, Rac1 promotes VEGF-induced endothelial cell migration by stimulating the formation of lamellipodia and membrane ruffles. To form these membrane protrusions, Rac1 is activated by guanine nucleotide exchange factors (GEFs) that catalyze the exchange of GDP for GTP. The goal of this study was to identify the GEF responsible for activating Rac1 in response to VEGF stimulation. We have found that VEGF stimulates biphasic activation of Rac1 and for these studies we focused on the peak of activation that occurs at 30 min. Inhibition of VEGFR-2 signaling blocks VEGF-induced Rac1 activation. Using a Rac1 nucleotide-free mutant (G15ARac1), which has a high affinity for binding activated GEFs, we show that the Rac GEF Vav2 associates with G15ARac1 after VEGF stimulation. Additionally, we show that depleting endothelial cells of endogenous Vav2 with siRNA prevents VEGF-induced Rac1 activation. Moreover, Vav2 is tyrosine phosphorylated upon VEGF treatment, which temporally correlates with Rac1 activation and requires VEGFR-2 signaling and Src kinase activity. Finally, we show that depressing Vav2 expression by siRNA impairs VEGF-induced endothelial cell migration. Taken together, our results provide evidence that Vav2 acts downstream of VEGF to activate Rac1.  相似文献   

14.
目的:研究成纤维激活蛋白(Fibroblast Activation Protein,FAP)在促进卵巢癌细胞发生侵袭、迁移、增殖过程中与整合素α3β1、尿激酶型纤溶酶原激活剂受体(uPAR)的关系。方法:1).免疫共沉淀共同检测整合素α3β1、uPAR在HO-8910PM上是否为二聚体。2).transwell侵袭实验、迁移实验检测抑制整合素α3β1、uPAR后,卵巢癌细胞系HO-8910PM的侵袭迁移能力;3).抑制整合素α3β1、uPAR后,再给予FAPet对HO-8910PM侵袭、迁移和增殖的影响。结果:1).整合素α3β1、uPAR在HO-8910PM细胞外同一个位置表达;2).抑制整合素α3β1能够明显抑制HO-8910PM的侵袭、迁移、增殖能力,并且可以抑制FAP对肿瘤的作用。3).PAI—1抑制uPAR后,HO—8910PM的侵袭、迁移、增殖无明显变化,同时对FAP也无明显作用。结论:整合素α3β1和uPAR在HO-8910PM是一个复合体,FAPα,在细胞外是通过整合素α3β1传递信号进入细胞内而不是通过uPAR,整合素α3β1是通过uPAR与肿瘤细胞相连接。  相似文献   

15.
16.
Human leukocyte endothelial adhesion and transmigration occur in the early stage of the pathogenesis of atherosclerosis. Vascular endothelial cells are targeted by pro-inflammatory cytokines modulating many gene proteins responsible for cell adhesion, thrombosis and inflammatory responses. This study examined the potential of compound K to inhibit the pro-inflammatory cytokine TNF-α induction of monocyte adhesion onto TNF-α-activated human umbilical vein endothelial cells (HUVEC). HUVEC were cultured with 10 ng/ml TNF-α with individual ginsenosides of Rb1, Rc, Re, Rh1 and compound K (CK). Ginsenosides at doses of ?50 μM did not show any cytotoxicity. TNF-α induced THP-1 monocyte adhesion to HUVEC, and such induction was attenuated by Rh1 and CK. Consistently, CK suppressed TNF-α-induced expression of HUVEC adhesion molecules of VCAM-1, ICAM-1 and E-selectin, and also Rh1 showed a substantial inhibition. Rh1 and CK dampened induction of counter-receptors, α4/β1 integrin VLA-4 and αL/β2 integrin LFA-1 in TNF-α-treated THP-1 cells. Additionally, CK diminished THP-1 secretion of MMP-9 required during transmigration, inhibiting transendothelial migration of THP-1 cells. CK blunted TNF-α-promoted IL-8 secretion of HUVEC and CXCR1 expression of THP-1 monocytes. Furthermore, TNF-α-activated endothelial IκB phosphorylation and NF-κB nuclear translocation were disturbed by CK, and TNF-α induction of α4/β1 integrin was abrogated by the NF-κB inhibitor SN50. These results demonstrate that CK exerts anti-atherogenic activity with blocking leukocyte endothelial interaction and transmigration through negatively mediating NF-κB signaling.  相似文献   

17.
Integrin adhesion receptors mediate cell-cell and cell-extracellular matrix interactions, which control cell morphology and migration, differentiation, and tissue integrity. Integrins recruit multimolecular adhesion complexes to their cytoplasmic domains, which provide structural and mechanosensitive signaling connections between the extracellular and intracellular milieux. The different functions of specific integrin heterodimers, such as α4β1 and α5β1, have been attributed to distinct signal transduction mechanisms that are initiated by selective recruitment of adhesion complex components to integrin cytoplasmic tails. Here, we report the isolation of ligand-induced adhesion complexes associated with wild-type α4β1 integrin, an activated α4β1 variant in the absence of the α cytoplasmic domain (X4C0), and a chimeric α4β1 variant with α5 leg and cytoplasmic domains (α4Pα5L), and the cataloguing of their proteomes by MS. Using hierarchical clustering and interaction network analyses, we detail the differential recruitment of proteins and highlight enrichment patterns of proteins to distinct adhesion complexes. We identify previously unreported components of integrin adhesion complexes and observe receptor-specific enrichment of molecules with previously reported links to cell migration and cell signaling processes. Furthermore, we demonstrate colocalization of MYO18A with active integrin in migrating cells. These datasets provide a resource for future studies of integrin receptor-specific signaling events.  相似文献   

18.
Lumican, an extracellular matrix protein of the small leucine-rich proteoglycan family, has been shown to impede melanoma progression by inhibiting cell migration. In the present study, we show that lumican targets α2β1 integrin thereby inhibiting cell migration. A375 melanoma cells were transfected with siRNA directed against the α2 integrin subunit. Compared to A375 control cells, the anti-migratory effect of lumican was abrogated on transfected A375 cells. Moreover, lumican inhibited the chemotactic migration of Chinese hamster ovary (CHO) cells stably transfected with α2 integrin subunit (CHO-A2) but not that of wild-type CHO cells (CHO-WT) lacking this subunit. In contrast to CHO-WT cells, we observed in time-lapse microscopy a decrease of CHO-A2 cell migration speed in presence of lumican. Focal adhesion kinase phosphorylated at tyrosine-397 (pFAK) and total FAK were analysed in CHO-WT and CHO-A2 cells. A significant decrease of the ratio pFAK/FAK was shown in presence of recombinant human lumican. Using solid phase assays, a direct binding between lumican and the α2β1 integrin was demonstrated. This interaction did not involve the glycan moiety of lumican and was cation independent. Lumican was also able to bind the activated I domain of the α2 integrin subunit with a Kd ≥ 200 nM. In conclusion, we demonstrated for the first time that the inhibition of cell migration by lumican depends on a direct binding between the core protein of lumican and the α2β1 integrin.  相似文献   

19.
Integrin α9β1     
Integrins are transmembrane heterodimeric receptors responsible for transducing and modulating signals between the extracellular matrix and cytoskeleton, ultimately influencing cell functions such as adhesion and migration. Integrin α9β1 is classified within a two member sub-family of integrins highlighted in part by its specialized role in cell migration. The importance of this role is demonstrated by its regulation of numerous biological functions including lymphatic valve morphogenesis, lymphangiogenesis, angiogenesis and hematopoietic homeostasis. Compared to other integrins the signaling mechanisms that transduce α9β1-induced cell migration are not well described. We have recently shown that Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Specifically it activates inducible nitric oxide synthase (iNOS) and in turn nitric oxide (NO) production as a means to transduce cell migration. Furthermore, we have also described a role for FAK, Erk and Rac1 in α9β1 signal transduction. Here we provide an over view of known integrin α9β1 signaling pathways and highlight its roles in diverse biological conditions.  相似文献   

20.
Tetraspanin CD151 associates with laminin-binding α(3)β(1)/α(6)β(1) integrins in epithelial cells and regulates adhesion-dependent signaling events. We found here that CD151 plays a role in recruiting Ras, Rac1, and Cdc42, but not Rho, to the cell membrane region, leading to the formation of α(3)β(1)/α(6)β(1) integrin-CD151-GTPases complexes. Furthermore, cell adhesion to laminin enhanced CD151 association with β(1) integrin and, thereby, increased complex formation between the β(1) family of integrins and small GTPases, Ras, Rac1, and Cdc42. Adhesion receptor complex-associated small GTPases were activated by CD151-β(1) integrin complex-stimulating adhesion events, such as α(3)β(1)/α(6)β(1) integrin-activating cell-to-laminin adhesion and homophilic CD151 interaction-generating cell-to-cell adhesion. Additionally, FAK and Src appeared to participate in this adhesion-dependent activation of small GTPases. However, engagement of laminin-binding integrins in CD151-deficient cells or CD151-specific siRNA-transfected cells did not activate these GTPases to the level of cells expressing CD151. Small GTPases activated by engagement of CD151-β(1) integrin complexes contributed to CD151-induced cell motility and MMP-9 expression in human melanoma cells. Importantly, among the four tetraspanin proteins that associate with β(1) integrin, only CD151 exhibited the ability to facilitate complex formation between the β(1) family of integrins and small GTPases and stimulate β(1) integrin-dependent activation of small GTPases. These results suggest that CD151 links α(3)β(1)/α(6)β(1) integrins to Ras, Rac1, and Cdc42 by promoting the formation of multimolecular complexes in the membrane, which leads to the up-regulation of adhesion-dependent small GTPase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号