首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phosphatidylinositol 3-phosphate [PI(3)P] is a phosphatidylinositol 3-kinase product whose localisation is restricted to the limiting membranes of early endosomes and to the internal vesicles of multivesicular bodies. In this study the intracellular distribution of PI(3)P was compared with those of another phosphoinositide and a number of endosomal proteins. Using a 2xFYVE probe specific for PI(3)P we found that PI(3)P is present in microdomains within the endosome membrane, whereas a phosphoinositide required for clathrin-mediated endocytosis, PI(4,5)P2, was only detected at the plasma membrane. The small GTPase Rab5 as well as the PI(3)P-binding proteins EEA1, SARA and CISK were found to be abundant within PI(3)P-containing endosomal microdomains. In contrast, another PI(3)P-binding protein, Hrs, was found concentrated in clathrin-coated endosomal microdomains with low levels of PI(3)P. While PI(3)P-containing microdomains could be readily distinguished on enlarged endosomes in cells transfected with a constitutively active Rab5 mutant, such domains could also be detected in endosomes of non-transfected cells. We conclude that the membranes of early endosomes consist of microdomains in which PI(3)P and specific proteins are concentrated. These microdomains may be necessary for the assembly of distinct multimolecular complexes that specify organelle identity, membrane trafficking and receptor signalling.David J. Gillooly and Camilla Raiborg contributed equally  相似文献   

2.
Endospanin-1 is a negative regulator of the cell surface expression of leptin receptor (OB-R), and endospanin-2 is a homologue of unknown function. We investigated the mechanism for endospanin-1 action in regulating OB-R cell surface expression. Here we show that endospanin-1 and -2 are small integral membrane proteins that localize in endosomes and the trans-Golgi network. Antibody uptake experiments showed that both endospanins are transported to the plasma membrane and then internalized into early endosomes but do not recycle back to the trans-Golgi network. Overexpression of endospanin-1 or endospanin-2 led to a decrease of OB-R cell surface expression, whereas shRNA-mediated depletion of each protein increased OB-R cell surface expression. This increased cell surface expression was not observed with OB-Ra mutants defective in endocytosis or with transferrin and EGF receptors. Endospanin-1 or endospanin-2 depletion did not change the internalization rate of OB-Ra but slowed down its lysosomal degradation. Thus, both endospanins are regulators of postinternalization membrane traffic of the endocytic pathway of OB-R.  相似文献   

3.
Oncogenic transformation leads to an increased sensitivity to apoptosis, a characteristic that is selectively lost during tumor progression. The sensitization process affects the mitochondrial pathway of apoptosis through signaling events that are poorly defined. We previously showed that a deregulated expression of c-Myc in cells treated with toxic agents caused an enhanced activation of p38 that acts in a death-promoting pathway. Here, we show that deregulated expression of c-Myc causes a severe reduction in the basal activity of Akt, which was further accelerated by serum deprivation. Furthermore, c-Myc expression repressed the activation of Akt induced by the toxic agents doxorubicin, cisplatin and H2O2, and also by the physiological agonists PDGF and insulin. We determined that the activation of Akt was inhibited as a result of the action of c-Myc upstream of phosphatidylinositol 3-kinase (PI3K) activation. c-Myc overexpression impaired the induced association of the p85 subunit of PI3K with phosphotyrosine containing proteins, causing a reduction in the activation of PI3K and recruitment of Akt to the membrane. Inhibiting Akt in addition to enhancing p38 further exacerbate the imbalance between the death and survival signals and results in an enhanced sensitivity to apoptosis. This study was supported by the Canadian Institutes of Health Research Grant MOP-37860 to J.L. and K.B. and the Canada Research Chair in Stress Signal Transduction (to J.L.).  相似文献   

4.
Phosphoinositides function as fundamental signaling molecules and play roles in diverse cellular processes. Certain types of viruses may employ host cell phosphoinositide signaling systems to facilitate their replication cycles. Here we demonstrate that the β isoform of class II PI3K (PI3K-C2β) plays an indispensable role in hepatitis C virus (HCV) propagation in human hepatocellular carcinoma cells. Knockdown of PI3K-C2β abrogated HCV propagation in the cell. Using an HCV replicon system, we found that knockdown of PI3K-C2β substantially repressed the full-genome replication, while showing relatively small reductions in sub-genome replication, in which structural proteins including core protein were deleted. We also found that HCV core protein showed the binding activity towards D4-phosphorylated phosphoinositides and overlapped localization with phosphatidylinositol 3,4-bisphosphate in the cell. These results suggest that the phosphoinositide generated by PI3K-C2β plays an indispensable role in the HCV replication cycle through the binding to HCV core protein.  相似文献   

5.

Background

Upon lipopolysaccharide (LPS) stimulation, activation of both the Toll-like receptor 4 (TLR4) and phosphoinositide 3-kinase (PI3K) pathways serves to balance proinflammatory and anti-inflammatory responses. Although the antagonist to TLR4 represents an emerging promising target for the treatment of sepsis; however, the role of the PI3K pathway under TLR4-null conditions is not well understood. This goal of this study was to investigate the effect of inhibition of PI3K on innate resistance to LPS toxicity in a murine model.

Results

The overall survival of the cohorts receiving intraperitoneal injections of 100, 500, or 1000 μg LPS from Escherichia coli serotype 026:B6 after 7 d was 100%, 10%, and 10%, respectively. In contrast, no mortality was noted after 500-μg LPS injection in Tlr4-/- mice. When the PI3K inhibitor LY294002 was injected (1 mg/25 g body weight) 1 h prior to the administration of LPS, the overall survival of the Tlr4-/- mice was 30%. In the Tlr4-/- mice, the LPS injection induced no NF-κB activation but an increased Akt phosphorylation in the lung and liver, when compared to that of the C57BL/6 mice. Injection of 500 μg LPS led to a significant induction in O2- detected by electron paramagnetic resonance (EPR) spin trapping spectroscopy in the lung and liver at 3 and 6 h in C57BL/6 but not Tlr4-/- mice. Addition of LY294002 only significantly increased the O2- level in the lung and liver of the Tlr4-/- mice but not in the C57BL/6 mice following 500-μg LPS injection. In addition, the serum IL-1β and IL-2 levels were more elevated in C57BL/6 mice than in Tlr4-/- mice. Notably, IL-1β and IL-2 were significantly increased in Tlr4-/- mice but not in the C57BL/6 mice when the PI3K pathway was inhibited by LY294002 prior to LPS injection.

Conclusions

In this study, we demonstrate that innate resistance to LPS toxicity in Tlr4-/- mice is impaired by inhibition of the PI3K pathway, with a corresponding increase in mortality and production of tissue O2- and inflammatory cytokines.  相似文献   

6.
7.
Hao X  Wang Y  Ren F  Zhu S  Ren Y  Jia B  Li YP  Shi Y  Chang Z 《Cellular signalling》2011,23(5):935-946
SNXs (sorting nexin), a family of proteins playing roles in cargo sorting and signaling from compartments within the endocytic network, regulate traffic of membrane proteins including TGF-β receptors. Here we report that the full length human and mouse SNX25, a SNX member with PX, PXA and RGS domains, co-localizes with TGF-β receptors, and forms internalized cytosolic punctae upon treatment with TGF-β. While overexpression of SNX25 inhibits TGF-β induced luciferase reporter activity, knocking down endogenous SNX25 by siRNA in NIH3T3 cells elevates the TGF-β receptor levels and facilitates TGF-β signaling. Immunoprecipitation experiments demonstrate that SNX25 interacts with TβRI. Western blot analyses indicate that SNX25 enhances the degradation of TGF-β receptors. SNX25 induced TGF-β receptor degradation is shown via the clathrin dependent endocytosis pathway into lysosome. We have characterized that PXA domain of SNX25 is required for the degradation of TβRI. Our findings demonstrate that SNX25 negatively regulates TGF-β signaling by enhancing the receptor degradation through lysosome pathway.  相似文献   

8.
Girao H  Geli MI  Idrissi FZ 《FEBS letters》2008,582(14):2112-2119
Genetic analysis of endocytosis in yeast early pointed to the essential role of actin in the uptake step. Efforts to identify the machinery involved demonstrated the important contribution of Arp2/3 and the myosins-I. Analysis of the process using live-cell fluorescence microscopy and electron microscopy have recently contributed to refine molecular models explaining clathrin and actin-dependent endocytic uptake. Increasing evidence now also indicates that actin plays important roles in post-internalization events along the endocytic pathway in yeast, including transport of vesicles, motility of endosomes and vacuole fusion. This review describes the present knowledge state on the roles of actin in endocytosis in yeast and points to similarities and differences with analogous processes in mammals.  相似文献   

9.
A novel class of potent PI3Kδ inhibitors with >1000-fold selectivity against other class I PI3K isoforms is described. Optimization of the substituents on a triazole aminopyrazine scaffold, emerging from an in-house PI3Kα program, turned moderately selective PI3Kδ compounds into highly potent and selective PI3Kδ inhibitors. These efforts resulted in a series of aminopyrazines with PI3Kδ IC50 ? 1 nM in the enzyme assay, some of the most selective PI3Kδ inhibitors published to date, with a cell potency in a JeKo-cell assay of 20–120 nM.  相似文献   

10.
Endosomal trafficking of EGF receptor (EGFR) upon stimulation is a highly regulated process during receptor-mediated signaling. Recently, the sorting nexin (SNX) family has emerged as an important regulator in the membrane trafficking of EGFR. Here, we report the identification of a novel interaction between two members of the family, SNX1 and SNX5, which is mediated by the newly defined BAR domain of both SNXs. We have also shown that the PX domain of SNX5 binds specifically to PtdIns other than to PtdIns(3)P. Furthermore, the BAR domain but not the PX domain of SNX5 is sufficient for its subcellular membrane association. Functionally, overexpression of SNX5 inhibits the degradation of EGFR. This process appears to be independent of its interaction with SNX1. However, overexpression of SNX1 is able to attenuate the effect of SNX5 on EGFR degradation, suggesting the two proteins may play antagonistic roles in regulating endosomal trafficking of the receptor.  相似文献   

11.
Nanoparticles (NPs) are considered attractive carriers for gene therapy and drug delivery owing to their minor toxic effect and their ability to associate and internalize into mammalian cells. In this study, we compared the endocytosis into HeLa cells of NPs exposing either a negative or positive charge on their surface. The exposed charge significantly affected their ability to internalize as well as the cellular endocytosis mechanism utilized. Negatively charged NPs show an inferior rate of endocytosis and do not utilize the clathrin-mediated endocytosis pathway. On the other hand, positively charged NPs internalize rapidly via the clathrin-mediated pathway. When this pathway is blocked, NPs activate a compensatory endocytosis pathway that results in even higher accumulation of NPs. Overall, the addition of a positive charge to NPs may improve their potential as nanoparticulate carriers for drug delivery.  相似文献   

12.
The discovery of 4-morpholino-pyrimidin-6-one and 4-morpholino-pyrimidin-2-one-containing inhibitors of Phosphoinositide 3-kinases (PI3K) p110β isoform is reported. Structure-based optimisation of the original fragment hit resulted in lead compounds with improvements in ligand efficiency, lipophilicity efficiency, p110β potency and selectivity over p110α.  相似文献   

13.
In mammals, seven phosphoinositides are known to play crucial roles as signaling molecules in a variety of cellular processes. Their synthesis and degradation are thought to be strictly controlled by metabolic enzymes such as phosphoinositide kinases and phosphatases, and their aberrant activities cause diseases. Thus, there is great interest in convenient and high-throughput measurement of such activities for the screening of drugs that enhance or block them. To date, radioactive labeling and colorimetric detection of released inorganic phosphates are mainly used to measure phosphoinositide kinase and phosphatase activities, respectively. Here, we describe a novel method for detecting and quantifying individual phosphoinositides via phosphoinositide-binding domains that exhibit high specificity and affinity toward this lipid. Enzyme-linked immunosorbent assay wells are modified with alkyl chains (C16), which enables more uniform and quantitative immobilization of phosphoinositide-containing liposomes onto the well surfaces. Phosphoinositides, as the substrate or the product, are detected by pleckstrin homology domains that specifically bind to each phosphoinositide. By this method, phosphoinositide contents are measured with higher sensitivities than those by conventional methods. More importantly, both phosphoinositide kinase and phosphatase activities can be measured for purified enzymes and crude cellular lysates. This assay is easy, sensitive, and quantitative and thus may have a variety of applications in the development of diagnostic tests or the screening of therapeutic treatments for diseases such as cancer and diabetes which may be caused by abnormal phosphoinositide metabolism.  相似文献   

14.
Endothelial cell migration is essential for tumor angiogenesis, and interleukin-8 (IL-8) has been shown to play an important role in tumor growth, angiogenesis, and metastasis. This study aimed to investigate the molecular mechanism of IL-8 induced endothelial cell migration. Our results indicated that IL-8 induced a rapid rearrangement of the actin cytoskeleton in EA.Hy926 cells, generating extensions resembling membrane ruffling and stress fibers. These processes required parallel upregulation of the small GTPases Rac1 and RhoA. Moreover, we demonstrated that IL-8 activated PI3K following the same kinetics observed from IL-8 induction of cytoskeletal rearrangement, suggesting the participation of PI3K in these processes. Taken together, our study demonstrates that PI3K-Rac1/RhoA signaling pathway plays a vital role in IL-8 induced endothelial cell migration, and provides new insight into the molecular mechanisms by which IL-8 contributes to tumor angiogenesis and metastasis.  相似文献   

15.
Protrudin is a FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia. Our image-based screening of the lipid binding domain library revealed novel plasma membrane localization of the FYVE domain of protrudin unlike canonical FYVE domains that are localized to early endosomes. The membrane binding study by surface plasmon resonance analysis showed that this FYVE domain preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) unlike canonical FYVE domains that specifically bind phosphatidylinositol 3-phosphate (PtdIns(3)P). Furthermore, we found that these phosphoinositides (PtdInsP) differentially regulate shuttling of protrudin between endosomes and plasma membrane via its FYVE domain. Protrudin mutants with reduced PtdInsP-binding affinity failed to promote neurite outgrowth in primary cultured hippocampal neurons. These results suggest that novel PtdInsP selectivity of the protrudin-FYVE domain is critical for its cellular localization and its role in neurite outgrowth.  相似文献   

16.
Simple procedures using FM4-64 to follow membrane internalization and transport to the vacuolar system and endomembranes in Aspergillus nidulans are described. FM4-64 internalization is energy, temperature and F-actin dependent, strongly suggesting that it occurs by endocytosis. The dye sequentially labels: (i) cortical punctuate organelles whose motility resembles that of yeast actin patches; (ii) approximately 0.7 microm circular, hollow structures representing mature endosome/vacuole; and (iii) intermediate and large (2-3 microm in diameter) size vacuoles whose lumen is strongly labeled with 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (CDCFDA). These large vacuoles possibly correspond to the final stage of one branch of the endocytic pathway. In addition, FM4-64 labels strongly the mitochondrial network and weakly the nuclear membrane. A class of cytoplasmic punctuate organelles which become fluorescent very shortly after dye loading and that can move in either apical or basal direction at an average rate of 2-3 microm s(-1) is also described. This work provides a useful framework for the phenotypic characterization of A. nidulans mutants affected in endocytosis.  相似文献   

17.
In this work, we have imaged the lateral diffusion of activated epidermal growth factor receptor (EGFR) on cell membrane for studying its internalization pathway. After EGF activation, the mobility of individual EGFR molecules was measured and compared with that in the cells disrupted of clathrin-coated pits and caveolae, the two endocytosis-competent membrane microdomains. The results implicated that activated EGFR molecules associated with clathrin-coated pits but not caveolae at low doses of EGF, whereas they were located in these two domains at high EGF doses. It provided supporting evidence for the occurrence of both clathrin-dependent and caveolae-dependent EGFR endocytosis.  相似文献   

18.
Summary The endocytic pathway is a well established process in animal cells, but it is not well understood in plant cells. At the morphological level, all the compartments involved in endocytosis in animal cells seem to have counterparts in plant cells, and the organization of the pathway appears to share some striking similarities. Several Rab homologues have been found in plant cells, including homologues of Rab5, Rab7, and Rab11, markers of endocytic compartments in animal cells. Coat proteins are also present in plant cells, including clathrin, adaptins, and ADP ribosylation factor proteins. However, endocytic compartments in plant cells also exhibit specific features both in organization and function. The molecular composition of these compartments remains to be established, and future work will be necessary to identify the key regulators of endocytic trafficking in plant cells.Abbreviations EE early endosome - LE late endosome - ECV-MVB endosomal carrier vesicle-multivesicular body - PCR partially coated reticulum - MPR mannose 6-phosphate receptor - TGN trans-Golgi network  相似文献   

19.
Phosphatidylinositol 4,5-biphosphate [PI(4,5)P(2) ], the predominant phosphoinositide (PI) on the plasma membrane, binds the matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV) with similar affinities in vitro. Interaction with PI(4,5)P(2) is critical for HIV-1 assembly on the plasma membrane. EIAV has been shown to localize in internal compartments; hence, the significance of its interaction with PI(4,5)P(2) is unclear. We therefore investigated the binding in vitro of other PIs to EIAV MA and whether intracellular association with compartments bearing these PIs was important for assembly and release of virus-like particles (VLPs) formed by Gag. In vitro, EIAV MA bound phosphatidylinositol 3-phosphate [PI(3)P] with higher affinity than PI(4,5)P(2) as revealed by nuclear magnetic resonance (NMR) spectra upon lipid titration. Gag was detected on the plasma membrane and in compartments enriched in phosphatidylinositol 3,5-biphosphate [PI(3,5)P(2) ]. Treatment of cells with YM201636, a kinase inhibitor that blocks production of PI(3,5)P(2) from PI(3)P, caused Gag to colocalize with aberrant compartments and inhibited VLP release. In contrast to HIV-1, release of EIAV VLPs was not significantly diminished by coexpression with 5-phosphatase IV, an enzyme that specifically depletes PI(4,5)P(2) from the plasma membrane. However, coexpression with synaptojanin 2, a phosphatase with broader specificity, diminished VLP production. PI-binding pocket mutations caused striking budding defects, as revealed by electron microscopy. One of the mutations also modified Gag-Gag interaction, as suggested by altered bimolecular fluorescence complementation. We conclude that PI-mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release.  相似文献   

20.
Genipin, an aglycon of geniposide, has been reported to exhibit diverse pharmacological functions such as antitumor and anti-inflammatory effects. This study aimed to elucidate the anti-inflammatory mechanism of genipin, focusing particularly on the role of heme oxygenase-1 (HO-1), a potent anti-inflammatory enzyme. In RAW264.7 cells, genipin increased HO-1 expression and its enzyme activity via a NF-E2-related factor 2 (Nrf2)–antioxidant response element (ARE) pathway. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. Additional experiments showed that the activation of c-Jun NH2-terminal kinase 1/2 (JNK1/2) is required for genipin-induced phosphorylation and nuclear translocation of Nrf2 and antioxidant response element (ARE)-driven induction of HO-1, and acts as a downstream effector of PI 3-kinase. Furthermore, functional significance of HO-1 induction was revealed by genipin-mediated inhibition of lipopolysaccharide-stimulated inducible nitric oxide synthase expression or cyclooxygenase-2 promoter activity, the response was reversed by the blocking of HO-1 protein synthesis or HO-1 enzyme activity. Therefore, identification of PI 3-kinase-JNK1/2-Nrf2-linked signaling cascade in genipin-mediated HO-1 expression defines the signaling event that could participate in genipin-mediated anti-inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号