首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rad51 protein is essential for homologous recombination repair of DNA damage, and is over-expressed in chemo- or radioresistant carcinomas. The polycyclic hydrocarbon carcinogen benzo[a]pyrene (B[a]P) affects MAPKs transduction pathways. Gefitinib (IressaR, ZD1839) is a selective epidermal growth factor receptor tyrosine kinase inhibitor that blocks growth factor-mediated cell proliferation and ERK1/2 activation. We hypothesized that gefitinib enhances B[a]P-mediated cytotoxicity by decreasing ERK1/2 activation. Exposure of human lung cancer cells to gefitinib decreased B[a]P-elicited ERK1/2 activation and induced Rad51 protein expression. Gefitinib and B[a]P co-treatment decreased Rad51 protein stability by triggering degradation via a 26S proteasome-dependent pathway. Expression of constitutive active MKK1/2 vectors (MKK1/2-CA) rescues the decreased ERK1/2 activity, and restores Rad51 protein level and stability under gefitinib and B[a]P co-treatment. Gefitinib enhances B[a]P-induced growth inhibition, cytotoxicity and mutagenicity. Co-treatment with gefitinib and B[a]P can further inhibit cell growth significantly after depletion of endogenous Rad51 by siRad51 RNA transfection. Enhancement of ERK1/2 activation by MKK1-CA expression decrease B[a]P- and gefitinib-induced cytotoxicity, and B[a]P-induced mutagenicity. Rad51 protein protects lung cancer cells from synergistic cytotoxic and mutagenic effects induced by gefitinib and B[a]P. Suppression of Rad51 protein expression may be a novel lung cancer therapeutic modality to overcome drug resistance to gefitinib.  相似文献   

2.
Elevated heat shock protein 90 (Hsp90) expression has been linked to poor prognosis in patients with non-small cell lung cancer (NSCLC). The multitargeted antifolate pemetrexed has demonstrated certain clinical activities against NSCLC. However, the efficacy of the combination of pemtrexed and Hsp90 inhibitor to prolong the survival of patients with NSCLC still remains unclear. Human MutS homolog 2 (MSH2), a crucial element of the highly conserved DNA mismatch repair system, and defects or polymorphisms of MSH2 have been found in lung cancer. In this study, we evaluated the effects of pemetrexed on NSCLC cell lines (H520 and H1703) and found that treatment with this drug at 20–50 µM increased the MSH2 mRNA and protein levels in a MKK3/6–p38 MAPK signal activation-dependent manner. Furthermore, the knockdown of MSH2 expression by transfection with small interfering RNA of MSH2 or the blockage of p38 MAPK activation by SB202190 enhanced the cytotoxicity of pemetrexed. Combining the drug treatment with an Hsp90 inhibitor resulted in an enhanced pemetrexed-induced cytotoxic effect, accompanied with the reduction of MSH2 protein and mRNA levels. The expression of constitutively active MKK6 (MKK6E) or HA-p38 MAPK vectors significantly rescued the decreased p38 MAPK activity, and restored the MSH2 protein levels and cell survival in NSCLC cells co-treated with pemetrexed and Hsp90 inhibitor. In this study, we have demonstrated that down-regulation of the MKK3/6–p38 MAPK signal with the subsequent reduction of MSH2 enhanced the cytotoxic effect of pemetrexed in H520 and H1703 cells. The results suggest a potential future benefit of combining pemetrexed and the Hsp90 inhibitor to treat lung cancer.  相似文献   

3.
Resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib and gefitinib, is a major clinical problem in the treatment of patients with non-small cell lung cancer (NSCLC). YM155 is a survivin small molecule inhibitor and has been demonstrated to induce cancer cell apoptosis and autophagy. EGFR-TKIs have been known to induce cancer cell autophagy. In this study, we showed that YM155 markedly enhanced the sensitivity of erlotinib to EGFR-TKI resistant NSCLC cell lines H1650 (EGFR exon 19 deletion and PTEN loss) and A549 (EGFR wild type and KRAS mutation) through inducing autophagy-dependent apoptosis and autophagic cell death. The effects of YM155 combined with erlotinib on apoptosis and autophagy inductions were more obvious than those of YM155 in combination with survivin knockdown by siRNA transfection, suggesting that YM155 induced autophagy and apoptosis in the NSCLC cells partially depend on survivin downregulation. Meanwhile, we found that the AKT/mTOR pathway is involved in modulation of survivin downregulation and autophagy induction caused by YM155. In addition, YM155 can induce DNA damage in H1650 and A549 cell lines. Moreover, combining erlotinib further augmented DNA damage by YM155, which were retarded by autophagy inhibitor 3MA, or knockdown of autophagy-related protein Beclin 1, revealing that YM155 induced DNA damage is autophagy-dependent. Similar results were also observed in vivo xenograft experiments. Therefore, combination of YM155 and erlotinib offers a promising therapeutic strategy in NSCLC with EGFR-TKI resistant phenotype.  相似文献   

4.
The purpose of this study is to investigate the effects of berbamine (BER), a naturally occurring small-molecule compound from Traditional Chinese Medicine (TCM) Berberis amurensis, on the growth and migration of human lung cancer A549 cell line. This cell line is the non–small cell lung cancer (NSCLC) which constitutes 80% of lung cancer cases and remains an aggressive lung cancer associated with a poor patient survival. Our present results have shown that BER significantly suppressed the in vitro and ex vivo growth of A549 cells in dose- and time-dependent manners. Furthermore, Western blot analysis confirmed that BER dose-dependently down-regulated the expression of anti-apoptotic protein Bcl-2 and up-regulated the level of pro-apoptotic protein Bax, eventually leading the reduction of Bcl-2/Bax protein ratio in A549 cells. In addition, BER significantly inhibited the A549 cell migration at the low concentrations without restraining the cell growth. More importantly, BER significantly enhanced the anticancer activity of anticancer agents such as trichostatin A (the histone deacetylase inhibitor) and celecoxib (the inhibitor of cyclooxygenase-2) by strongly reducing the viability and/or the Bcl-2/Bax protein ratio in A549 cells. Our findings suggest that BER may have the wide therapeutic and/or adjuvant therapeutic application in the treatment of human NSCLC.  相似文献   

5.
Emodin has antioxidative activities. Here, we investigated the effects of emodin on cigarette smoke (CS)‐induced acute lung inflammation. Mice (C57BL/6) were exposed to CS. Emodin was administrated with intraperitoneal bolus injection of emodin (20 or 40 mg/kg) daily 1 h before CS exposure. Emodin inhibited CS‐induced inflammatory cells infiltration in mouse lungs, especially at 40 mg/kg. Moreover, emodin resulted in significant reductions in total bronchoalveolar lavage fluid (BALF) cells, as compared with air exposure control, coupled with decreases in BALF cytokines. The activities of superoxide dismutase, catalase, and glutathione peroxidase were remarkably enhanced by emodin in CS‐exposed mice. Emodin enhanced CS‐induced expression of heme oxygenase‐1 and nuclear factor‐erythroid 2‐related factor‐2 (both are antioxidative genes) at both mRNA and protein levels, and profoundly promoted their activities in CS‐treated mice. Collectively, our results suggested that emodin protects mouse lung from CS‐induced lung inflammation and oxidative damage, most likely through its antioxidant activity.  相似文献   

6.

Aims

The mechanism by which SR48692 inhibits non-small cell lung cancer (NSCLC) proliferation was investigated.

Main methods

The ability of SR48692 to inhibit the proliferation of NSCLC cell lines NCI-H1299 and A549 was investigated in vitro in the presence or absence of neurotensin (NTS). The ability of NTS to cause epidermal growth factor receptor (EGFR) transactivation was investigated by Western blot using NSCLC cells and various inhibitors. The growth effects and Western blot results were determined in cell lines treated with siRNA for NTSR1.

Key findings

Treatment of A549 or NCI-H1299 cells with siRNA for NTSR1 reduced significantly NTSR1 protein and the ability of SR48692 to inhibit the proliferation of A549 or NCI-H1299 NSCLC cells. Treatment of A549 and NCI-H1299 cells with siRNA for NTSR1 reduced the ability of NTS to cause epidermal growth factor receptor (EGFR) transactivation. SR48692 or gefitinib (EGFR tyrosine kinase inhibitor) inhibited the ability of NTS to cause EGFR and ERK tyrosine phosphorylation. NTS transactivation of the EGFR was inhibited by GM6001 (matrix metalloprotease inhibitor), Tiron (superoxide scavenger) or U73122 (phospholipase C inhibitor) but not H89 (PKA inhibitor). NTS stimulates whereas SR48692 or gefitinib inhibits the clonal growth of NSCLC cells.

Significance

These results suggest that SR48692 may inhibit NSCLC proliferation in an EGFR-dependent mechanism.  相似文献   

7.
The effects of norcantharidin (NCTD), an anticancer drug in China, on the growth and migration in human lung cancer cells were investigated by in vitro and ex vivo assays. NCTD significantly inhibited the in vitro and ex vivo growth of human non-small cell lung cancer A549 cells in dose- and time-dependent manners. Western blot analysis indicated that NCTD dose-dependently down-regulated the expression of anti-apoptotic protein Bcl-2 and up-regulated the level of pro-apoptotic protein Bax, eventually leading the reduction of ratio of Bcl-2/Bax proteins in A549 cells. Moreover, NCTD significantly suppressed the A549 cell migration in the case of without reducing the cell viability. More importantly, NCTD significantly enhanced the anticancer activity of anticancer agents such as trichostatin A (the histone deacetylase inhibitor), celecoxib (the inhibitor of cyclooxygenase-2) and lovastatin (the inhibitor of HMG-CoA reductase) by strongly reducing the viability and/or the ratio of Bcl-2/Bax protein in A549 cells. Our findings suggest that NCTD may have the wide therapeutic and/or adjuvant therapeutic application in the treatment of human lung cancer.  相似文献   

8.
The purpose of this study is to investigate in vitro and ex vivo effects of matrine on the growth of human lung cancer and hepatoma cells and the cancer cell migration as well as the expressions of related proteins in the cancer cells. Matrine significantly inhibited the in vitro and ex vivo growth of human non-small cell lung cancer A549 and hepatoma SMMC-7721 cells. Matrine induced the apoptosis in A549 and SMMC-7721 cells. Western blot analysis indicated that matrine dose-dependently down-regulated the expression of anti-apoptotic protein Bcl-2 and up-regulated the level of pro-apoptotic protein bax, eventually leading the reduction of ratios of Bcl-2/Bax proteins in A549 and SMMC-7721 cells. Furthermore, matrine significantly suppressed the A549 cell migration without reducing the cell viability. In addition, matrine dramatically reduced the secretion of vascular endothelial growth factor A in A549 cells. More importantly, matrine markedly enhanced the anticancer activity of anticancer agent trichostatin A (the histone deacetylase inhibitor) by strongly reducing the viability and/or the ratio of Bcl-2/Bax protein in A549 cells. Our findings suggest that matrine may have the broad therapeutic and/or adjuvant therapeutic application in the treatment of human non-small cell lung cancer and hepatoma.  相似文献   

9.
Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells.  相似文献   

10.
Cisplatin resistance of non-small-cell lung cancer (NSCLC) needs to be well elucidated. RING finger protein (RNF38) has been proposed as a biomarker of NSCLC poor prognosis. However, its role in drug resistance in NSCLC is poorly understood. RNF38 expression was detected in normal lung epithelial cell and four NSCLC cell lines. RNF38 was stably overexpressed in A549 and H460 cells or silenced in H1975 and cisplatin-resistant A549 cells (A549-CDDP resistant) using lentiviral vectors. RNF38 expression levels were determined using quantitative real-time polymerase chain reaction and western blotting analysis. Cell viability in response to different concentrations of cisplatin was evaluated by Cell Counting Kit-8 assay. RNF38 expression levels were markedly elevated in NSCLC cells and cells harboring high RNF38 were less sensitive to cisplatin. Overexpression of RNF38 reduced, while RNF38 silencing increased the drug sensitivity of cisplatin in NSCLC cells. Cisplatin-resistant cells expressed high RNF38 level. RNF38 silencing promoted cell apoptosis and enhanced the drug sensitivity of cisplatin in cisplatin-resistant NSCLC cells. These findings indicate that RNF38 might induce cisplatin resistance of NSCLC cells via promoting cell apoptosis and RNF38 could be a novel target for rectify cisplatin resistance in NSCLC cases.  相似文献   

11.
Tumour inflammatory microenvironment is considered to play a role in the sensitivity of tumour cells to therapies and prognosis of patients with lung cancer. The expression of CCL20, one of the critical chemoattractants responsible for inflammation cells recruitment, has been shown overexpressed in variety of tumours. This study aimed at investigating potential mechanisms of CCL20 function and production in human non‐small cell lung cancer (NSCLC). Expression of CCL20 gene and protein in lung tissues of patients with NSCLC and NSCLC cells (A549) were determined. The interleukin (IL)‐1β‐induced signal pathways in A549 and the effect of CCL20‐induced A549 cell migration and proliferation were determined using migration assays and cell‐alive monitoring system. Mechanisms of signal pathways involved in the migration of CCL20 were also studied. We initially found that NSCLC tumour tissues markedly overexpressed CCL20 in comparison with normal lung samples. In addition, IL‐1β could directly promote CCL20 production in lung cancer cells, which was inhibited by extracellular signal‐regulated kinase (ERK)1/2 inhibitor, p38 mitogen‐activated protein kinase (p38 MARP) inhibitor or PI3K inhibitors. CCL20 promoted lung cancer cells migration and proliferation in an autocrine manner via activation of ERK1/2‐MAPK and PI3K pathways. Our data indicated that IL‐1β could stimulate CCL20 production from lung cancer cells through the activation of MAPKs and PI3K signal pathways, and the auto‐secretion of CCL20 could promote lung cancer cell migration and proliferation through the activation of ERK and PI3K signal pathways. Our results may provide a novel evidence that CCL20 could be a new therapeutic target for lung cancer.  相似文献   

12.
Lee JY  Lee YM  Chang GC  Yu SL  Hsieh WY  Chen JJ  Chen HW  Yang PC 《PloS one》2011,6(8):e23756

Background

Non-small cell lung cancer (NSCLC) patients with L858R or exon 19 deletion mutations in epidermal growth factor receptor (EGFR) have good responses to the tyrosine kinase inhibitor (TKI), gefitinib. However, patients with wild-type EGFR and acquired mutation in EGFR T790M are resistant to gefitinib treatment. Here, we showed that curcumin can improve the efficiency of gefitinib in the resistant NSCLC cells both in vitro and in vivo models.

Methods/Principal Findings

After screening 598 herbal and natural compounds, we found curcumin could inhibit cell proliferation in different gefitinib-resistant NSCLC cell lines; concentration-dependently down-regulate EGFR phosphorylation through promoting EGFR degradation in NSCLC cell lines with wild-type EGFR or T790M EGFR. In addition, the anti-tumor activity of gefitinib was potentiated via curcumin through blocking EGFR activation and inducing apoptosis in gefitinib-resistant NSCLC cell lines; also the combined treatment with curcumin and gefitinib exhibited significant inhibition in the CL1-5, A549 and H1975 xenografts tumor growth in SCID mice through reducing EGFR, c-MET, cyclin D1 expression, and inducing apoptosis activation through caspases-8, 9 and PARP. Interestingly, we observed that the combined treatment group represented better survival rate and less intestinal mucosal damage compare to gefitinib-alone therapy. We showed that curcumin attenuated the gefitinib-induced cell proliferation inhibition and apoptosis through altering p38 mitogen-activated protein kinase (MAPK) activation in intestinal epithelia cell.

Conclusions/Significance

Curcumin potentiates antitumor activity of gefitinib in cell lines and xenograft mice model of NSCLC through inhibition of proliferation, EGFR phosphorylation, and induction EGFR ubiquitination and apoptosis. In addition, curcumin attenuates gefitinib-induced gastrointestinal adverse effects via altering p38 activation. These findings provide a novel treatment strategy that curcumin as an adjuvant to increase the spectrum of the usage of gefitinib and overcome the gefitinib inefficiency in NSCLC patients.  相似文献   

13.
The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) such as gefitinib and erlotinib have been widely used in treating patients with advanced non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR TKI almost occurs in every patient eventually. To identify its potential mechanism, we established a human NSCLC cell line PC9/AB2 which was 576-fold decrease in gefitinib sensitivity compared with its parental PC9 cell lines. No EGFR-T790M mutation or abnormal expression of c-Met protein was found in PC9/AB2 cells. Over-expression of integrin β1 was found, accompanied with increase of the cells' adhesion and migration. To further confirm the role of integrin β1 in gefitinib acquired resistance, we transferred its siRNA-expressing plasmid and its whole cDNA expressing plasmid into PC9/AB2 and into PC9 cells, respectively. The sensitivity of NSCLC cells to gefitinib was negatively correlated with integrin β1 expression levels. All these data suggest that up-regulation of integrin β1 might be an important factor for gefitinib resistance in NSCLC cell line PC9/AB2.  相似文献   

14.
Objectives: Radiotherapy has played a limited role in the treatment of non-small cell lung cancer (NSCLC) due to the risk of tumour radioresistance. We previously established the radioresistant non-small cell lung cancer (NSCLC) cell line H460R. In this study, we identified differentially expressed genes between these radioresistant H460R cells and their radiosensitive parent line. We further evaluated the role of a differentially expressed gene, ITGB1, in NSCLC cell radioresistance and as a potential target for improving radiosensitivity.Materials and Methods: The radiosensitivity of NSCLC cells was evaluated by flow cytometry, colony formation assays, immunofluorescence, and Western blotting. Bioinformatics assay was used to identify the effect of ITGB1 and YAP1 expression in NSCLC tissues.Results: ITGB1 mRNA and protein expression levels were higher in H460R than in the parental H460 cells. We observed lower clonogenic survival and cell viability and a higher rate of apoptosis of ITGB1-knockdown A549 and H460R cells than of wild type cells post-irradiation. Transfection with an ITGB1 short hairpin (sh) RNA enhanced radiation-induced DNA damage and G2/M phase arrest. Moreover, ITGB1 induced epithelial-mesenchymal transition (EMT) of NSCLC cells. Silencing ITGB1 suppressed the expression and intracellular translocation of Yes-associated protein 1 (YAP1), a downstream effector of ITGB1.Conclusions: ITGB1 may induce radioresistance via affecting DNA repair and YAP1-induced EMT. Taken together, our data suggest that ITGB1 is an attractive therapeutic target to overcome NSCLC cell radioresistance.  相似文献   

15.
Wang R  Wan Q  Zhang Y  Huang F  Yu K  Xu D  Wang Q  Sun J 《Life sciences》2007,80(26):2481-2488
Previous findings indicate that emodin has anti-proliferation and anti-fibrosis effects on several cell lines. In this study, we investigated the effects of emodin on IL-1β induced proliferation of mesangial cells (MCs) and on their production of extracellular matrix (ECM), and explored the possible mechanisms. To test the therapeutic effect of emodin on progressive renal disease, we administered emodin to rats in renal failure models induced by subtotal nephrectomy, the renal function was analyzed. Our results showed emodin significantly suppressed IL-1β induced MC proliferation and arrested the cell-cycle progress in vitro. Fibronectin and collagen IV production by MC were significantly reduced after emodin treatment. P38 mRNA, protein levels of P-P38, P-MKK3/6 and P-MKK4 were quantified. We observed no alterations of P38 expression and P-MKK4 protein content; however, protein levels of P-P38 and P-MKK3/6 significantly decreased after emodin treatment. In the renal failure models, after administration of emodin for eight weeks, the rat renal lesions were significantly ameliorated, as evidenced by the decreased blood creatinine, urea, and the 24-hour urine protein. In conclusion, emodin suppresses IL-1β induced MC proliferation and ECM production in vitro. We hypothesize that this is achieved by inactivating MKK3/6 and P38. Emodin ameliorates renal failure in subtotal nephrectomized rats, which suggests a potential role of emodin in the treatment of progressive renal diseases.  相似文献   

16.
Lung cancer continues to be the leading cause of cancer deaths throughout the world and conventional therapy remains largely unsuccessful. Although, chemoprevention is a plausible alternative approach to curb the lung cancer epidemic, clinically there are no effective chemopreventive agents. Thus, development of novel compounds that can target cellular and molecular pathways involved in the multistep carcinogenesis process is urgently needed. Previous studies have suggested that substitution of sulfur by selenium in established cancer chemopreventive agents may result in more effective analogs. Thus in the present study we selected the chemopreventive agent S,S′-(1,4-phenylenebis[1,2-ethanediyl])bisisothiourea (PBIT), also known to inhibit inducible nitric oxide synthase (iNOS), synthesized its selenium analog (Se-PBIT) and compared both compounds in preclinical model systems using non-small cell lung cancer (NSCLC) cell lines (NCI-H460 and A549); NSCLC is the most common histologic type of all lung cancer cases. Se-PBIT was found to be superior to PBIT as an inducer of apoptosis and inhibitor of cell growth. Se-PBIT arrested cell cycles at G1 and G2-M stage in both A549 and H460 cell lines. Although both compounds are weakly but equally effective inhibitors of iNOS protein expression and activity, only Se-PBIT significantly enhanced the levels of p53, p38, p27 and p21 protein expression, reduced levels of phospholipase A2 (PLA2) but had no effect on cyclooxygenase-2 (COX-2) protein levels; such molecular targets are involved in cell growth inhibition, induction of apoptosis and cell cycle regulation. The results indicate that Se-PBIT altered molecular targets that are involved in the development of human lung cancer. Although, the mechanisms that can fully account for these effects remain to be determined, the results are encouraging to further evaluate the chemopreventive efficacy of Se-PBIT against the development of NSCLC in a well-defined animal model.  相似文献   

17.
AMPK/Nrf2 signaling regulates multiple antioxidative factors and exerts neuroprotective effects. Emodin is one of the main bioactive components extracted from Polygonum multiflorum, a plant possessing important activities for human health and for treating a variety of diseases. This study examined whether emodin can activate AMPK/Nrf2 signaling and induce the expression of genes targeted by this pathway. In addition, the anti-neuroinflammatory properties of emodin in lipopolysaccharide (LPS)-stimulated microglia were examined. In microglia, the emodin treatment increased the levels of LKB1, CaMKII, and AMPK phosphorylation. Emodin increased the translocation and transactivity of Nrf2 and enhanced the levels of HO-1 and NQO1. In addition, the emodin-mediated expression of HO-1 and NQO1 was attenuated completely by an AMPK inhibitor (compound C). Moreover, emodin decreased dramatically the LPS-induced production of NO and PGE2 as well as the protein expression and promoter activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, emodin effectively inhibited the production of pro-inflammatory cytokines, TNF-α and IL-6, and reduced the level of IκBα phosphorylation, leading to the suppression of the nuclear translocation, phosphorylation, and transactivity of NF-κB. Emodin also suppressed the LPS-stimulated activation of STATs, JNK, and p38 MAPK. The anti-inflammatory effects of emodin were reversed by transfection with Nrf-2 and HO-1 siRNA and by a co-treatment with an AMPK inhibitor. These results suggest that emodin isolated from P. multiflorum can be used as a natural anti-neuroinflammatory agent that exerts its effects by inducing HO-1 and NQO1 via AMPK/Nrf2 signaling in microglia.  相似文献   

18.
Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells. However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimed to study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 and A549 cells transfected with microRNA-7 (miR-7) mimic and inhibitor to investigate the effect of BVP on cell proliferation, apoptosis and apoptosis-associated molecules. The results showed that BVP significantly reduced the growth of A549 and NCL-H460 cells in a concentration-dependent and time-dependent manner, accompanied by a significant elevation of apoptosis. Additionally, the present study also confirmed that BVP-treated A549 cells showed increased levels of Bax and microRNA-7 (miR-7) and a decreased level of Bcl-2. The up-regulation of miR-7 enhanced the BVP sensitivity of NSCLC cells by suppressing cell proliferation and promoting cell apoptosis, while the inhibition of miR-7 reversed the anti-proliferative pro-apoptotic effects of BVP. Pre-treatment with miR-7 mimics enhanced the BVP-mediated down-regulation of Bax/Bcl-2 in NSCLC cells, while pre-treatment with the miR-7 inhibitor blocked the BVP-mediated down-regulation of Bax/Bcl. Taken together, these results confirm that BVP effectively inhibits NSCLC proliferation and that miR-7, as a novel target, is likely involved in BVP-induced growth suppression and the apoptosis of NSCLC cells.  相似文献   

19.
Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.  相似文献   

20.
Endothelin (ET)-1 is an important peptide in cancer progression stimulating cellular proliferation, tumor angiogenesis and metastasis. ET-1 binds with high affinity to the ETA receptor (R) and ETBR on cancer cells. High levels of tumor ET-1 and ETAR are associated with poor survival of lung cancer patients. Here the effects of ET-1 on epidermal growth factor (EGF)R and HER2 transactivation were investigated using non-small cell lung cancer (NSCLC) cells. ETAR mRNA was present in all 10 NSCLC cell lines examined. Addition of ET-1 to NCI-H838 or H1975 cells increased EGFR, HER2 and ERK tyrosine phosphorylation within 2 min. The increase in EGFR and HER2 transactivation caused by ET-1 addition to NSCLC cells was inhibited by lapatinib (EGFR and HER2 tyrosine kinase inhibitor (TKI)), gefitinib (EGFR TKI), ZD4054 or BQ-123 (ETAR antagonist), GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor) or Tiron (superoxide scavenger). ET-1 addition to NSCLC cells increased cytosolic Ca2+ and reactive oxygen species. ET-1 increased NSCLC clonal growth, whereas BQ123, ZD4054, lapatinib or gefitinib inhibited proliferation. The results indicate that ET-1 may regulate NSCLC cellular proliferation in an EGFR- and HER2-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号