首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Apelin, a newly identified bioactive adipokine, has been found to play important roles in multiple diseases, including diabetes, hypertension and cardiovascular diseases with unclear molecular mechanisms. The present study aimed to investigate the effects of apelin on endoplasmic reticulum (ER) stress in the pancreas of Akita mice, a well-established type 1 diabetic model. Apelin-13 (400 pmol/kg) was injected from tail vein for 10 weeks. The physiological characters of experimental animals were evaluated, pancreatic islet morphology and insulin content were assessed by immunohistochemistry, and ER stress markers in the pancreas were examined by Western blots. Our results indicate apelin treatment significantly ameliorates diabetes-induced reduction in pancreatic islet mass and insulin content. Further studies suggested apelin treatment alleviates ER stress by inhibiting the diabetes induced up-regulation of PERK and IRE1α and chaperones (GRP78, calnexin and Hsp70) levels in Akita mice. We also demonstrated that apelin treatment normalizes the diabetes induced alteration of AKT and ERK activations in the pancreas of Akita mice. Taken together, these results suggest a novel physiological role of apelin in alleviating ER stress in the pancreas of type 1 diabetes.  相似文献   

2.
Endoplasmic reticulum (ER) stress is associated with the development of diabetes. The present study sought to investigate the effect of Liraglutide, a glucagon like peptide 1 analogue, on ER stress in β-cells. We found that Liraglutide protected the pancreatic INS-1 cells from thapsigargin-induced ER stress and the ER stress associated cell apoptosis, mainly by suppressing the PERK and IRE1 pathways. We further tested the effects of Liraglutide in the Akita mouse, an ER-stress induced type 1 diabetes model. After administration of Liraglutide for 8 weeks, p-eIF2α and p-JNK were significantly decreased in the pancreas of the Akita mouse, while the treatment showed no significant impact on the levels of insulin of INS-cells. Taken together, our findings suggest that Liraglutide may protect pancreatic cells from ER stress and its related cell death.  相似文献   

3.
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25 mmol/L glucose for up to 4 weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1–7 months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4 months, and p-IRE levels were transiently elevated at 3 months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.  相似文献   

4.
The endoplasmic reticulum (ER) is responsible for many housekeeping functions within the cell and is an important site for pathways that regulates its state of homeostasis. When cellular states perturb ER functions, a phenomenon termed “ER stress” activates a number of pathways to counteract the associated damages; these pathways are together called the unfolded protein response (UPR). The UPR has a dualistic function; it exists to alleviate damage associated with ER stress, however, if this is not possible, then it signals for cell death through apoptosis. Cancer cells are shown to be very resilient under extreme environmental stress and an increasing number of studies have indicated that this may be largely due to an altered state of the UPR. The role of ER stress and the UPR in cancer is still not clear, however many components are involved and may prove to be promising targets in future anti-cancer therapy. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

5.
6.

Background

Amyotrophic lateral sclerosis (ALS) is a disease caused by motor neuron degeneration. Recently, a novel SIGMAR1 gene variant (p.E102Q) was discovered in some familial ALS patients.

Methods

We address mechanisms underlying neurodegeneration caused by the mutation using Neuro2A cells overexpressing σ1RE102Q, a protein of a SIGMAR1 gene variant (p.E102Q) and evaluate potential amelioration by ATP production via methyl pyruvate (MP) treatment.

Results

σ1RE102Q overexpression promoted dissociation of the protein from the endoplasmic reticulum (ER) membrane and cytoplasmic aggregation, which in turn impaired mitochondrial ATP production and proteasome activity. Under ER stress conditions, overexpression of wild-type σ1R suppressed ER stress-induced mitochondrial injury, whereas σ1RE102Q overexpression aggravated mitochondrial damage and induced autophagic cell death. Moreover, σ1RE102Q-overexpressing cells showed aberrant extra-nuclear localization of the TAR DNA-binding protein (TDP-43), a condition exacerbated by ER stress. Treatment of cells with the mitochondrial Ca2 + transporter inhibitor Ru360 mimicked the effects of σ1RE102Q overexpression, indicating that aberrant σ1R-mediated mitochondrial Ca2 + transport likely underlies TDP-43 extra-nuclear localization, segregation in inclusion bodies, and ubiquitination. Finally, enhanced ATP production promoted by methyl pyruvate (MP) treatment rescued proteasome impairment and TDP-43 extra-nuclear localization caused by σ1RE102Q overexpression.

Conclusions

Our observations suggest that neurodegeneration seen in some forms of ALS are due in part to aberrant mitochondrial ATP production and proteasome activity as well as TDP-43 mislocalization resulting from the SIGMAR1 mutation.

General significance

ATP supplementation by MP represents a potential therapeutic strategy to treat ALS caused by SIGMAR1 mutation.  相似文献   

7.
8.
Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2−/− mice on a hybrid Swiss Webster × 129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2−/− mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2−/− mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARα. The SREBP-2 pathway is induced in neonatal Pex2−/− livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2−/− livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARα activation in livers of newborn 129 and SW/129 Pex2−/− mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARα-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARα activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2−/− mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARα pathway inductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号