首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage colony stimulating factor (M-CSF) or CSF-1 controls the development of the macrophage lineage through its receptor tyrosine kinase, c-Fms. cAMP has been shown to influence proliferation and differentiation in many cell types, including macrophages. In addition, modulation of cellular ERK activity often occurs when cAMP levels are raised. We have shown previously that agents that increase cellular cAMP inhibited CSF-1-dependent proliferation in murine bone marrow-derived macrophages (BMM) which was associated with an enhanced extracellular signal-regulated kinase (ERK) activity. We report here that increasing cAMP levels, by addition of either 8-bromo cAMP (8BrcAMP) or prostaglandin E(1) (PGE1), can induce macrophage differentiation in M1 myeloid cells engineered to express the CSF-1 receptor (M1/WT cells) and can potentiate CSF-1-induced differentiation in the same cells. The enhanced CSF-1-dependent differentiation induced by raising cAMP levels correlated with enhanced ERK activity. Thus, elevated cAMP can promote either CSF-1-induced differentiation or inhibit CSF-1-induced proliferation depending on the cellular context. The mitogen-activated protein kinase/extracellular signal-related protein kinase kinase (MEK) inhibitor, PD98059, inhibited both the cAMP- and the CSF-1R-dependent macrophage differentiation of M1/WT cells suggesting that ERK activity might be important for differentiation in the M1/WT cells. Surprisingly, addition of 8BrcAMP or PGE1 to either CSF-1-treated M1/WT or BMM cells suppressed the CSF-1R-dependent tyrosine phosphorylation of cellular substrates, including that of the CSF-1R itself. It appears that there are at least two CSF-1-dependent pathway(s), one MEK/ERK dependent pathway and another controlling the bulk of the tyrosine phosphorylation, and that cAMP can modulate signalling through both of these pathways.  相似文献   

2.
Colony-stimulating factor-1 (CSF-1) activation of the CSF-1 receptor (CSF-1R) causes Cbl protooncoprotein tyrosine phosphorylation, Cbl-CSF-1R association and their simultaneous multiubiquitination at the plasma membrane. The CSF-1R is then rapidly internalized and degraded, whereas Cbl is deubiquitinated in the cytoplasm without being degraded. We have used primary macrophages from gene-targeted mice to study the role of Cbl. Cbl-/- macrophages form denser colonies and, at limiting CSF-1 concentrations, proliferate faster than Cbl+/+ macrophages. Their CSF-1Rs fail to exhibit multiubiquitination and a second wave of tyrosine phosphorylation previously suggested to be involved in preparation of the CSF-1-CSF-1R complex for endocytosis. Consistent with this result, Cbl-/- macrophage cell surface CSF-1-CSF-1R complexes are internalized more slowly, yet are still lysosomally degraded, and the CSF-1 utilization by Cbl-/- macrophages is reduced approximately 2-fold. Thus, attenuation of proliferation by Cbl is associated with its positive regulation of the coordinated multiubiquitination and endocytosis of the activated CSF-1R, and a reduction in the time that the CSF-1R signals from the cell surface. The results provide a paradigm for studies of the mechanisms underlying Cbl attenuation of proliferative responses induced by ligation of receptor tyrosine kinases.  相似文献   

3.
c-fps/fes encodes a 92-kDa protein-tyrosine kinase (NCP92) that is expressed at the highest levels in macrophages. To determine if c-fps/fes can mediate the action of the colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) and to identify potential targets of c-fps/fes in macrophages, we have overexpressed c-fps/fes in a CSF-1-dependent macrophage cell line. A 30- to 50-fold overexpression of c-fps/fes partially released these cells from their factor dependence by a nonautocrine mechanism, and this correlated with the tyrosine phosphorylation of two proteins of 130 and 75 kDa (P130 and P75). c-fps/fes did not cause tyrosine phosphorylation or activation of CSF-1 dependent targets, including CSF-1R, Shc, and phosphatidylinositol 3-kinase, and conversely, CSF-1 did not induce tyrosine phosphorylation of P130 and P75. P75 appears to be a novel phosphotyrosyl protein, whereas P130 cross-reacts with a known substrate of v-src. P130 and P75 may be direct substrates of c-fps/fes: P130 was tightly associated with NCP92, and the src homology 2 domain of NCP92 specifically bound phosphorylated P130 and P75 but not the CSF-1-induced phosphotyrosyl proteins, consistent with the possibility that P130 and P75 are physiological targets of c-fps/fes. We conclude that although c-fps/fes can functionally substitute for CSF-1R to a certain extent, these tyrosine kinases act largely independently of each other and that P130 and P75 are novel targets whose mechanisms of action may be unrelated to the signalling pathways utilized by receptor tyrosine kinases.  相似文献   

4.
The Vav family of proteins have the potential to act as both signalling adapters and GEFs for Rho GTPases. They have therefore been proposed as regulators of the cytoskeleton in various cell types. We have used macrophages from mice deficient in all three Vav isoforms to determine how their function affects cell morphology and migration. Macrophages lacking Vav proteins adopt an elongated morphology and have enhanced migratory persistence in culture. To investigate the pathways through which Vav proteins exert their effects we analysed the responses of macrophages to the chemoattractant CSF-1 and to adhesion. We found that morphological and signalling responses of macrophages to CSF-1 did not require Vav proteins. In contrast, adhesion-induced cell spreading, RhoA and Rac1 activation and cell signalling were all dependent on Vav proteins. We propose that Vav proteins affect macrophage morphology and motile behaviour by coupling adhesion receptors to Rac1 and RhoA activity and regulating adhesion signalling events such as paxillin and ERK1/2 phosphorylation by acting as adapters.  相似文献   

5.
Phosphoinositide 3-kinases (PI3Ks) are important regulators of cell migration. The PI3K isoform gamma is primarily expressed in haematopoietic cells, and is activated by G protein-coupled receptors (GPCRs). Here, we investigate the contribution of PI3Kgamma to macrophage responses to chemoattractants, using bone marrow-derived macrophages from wild-type and PI3Kgamma-null mice. We observe that early membrane ruffling induced by MCP-1, which activates a GPCR, or by CSF-1, which activates a tyrosine kinase receptor, is unaltered in PI3Kgamma(-/-) mice, although by 30 min MCP-1-induced cell polarization was strongly reduced in PI3Kgamma(-/-) compared to wild-type macrophages. The migration behaviour of the macrophages was analysed by time-lapse microscopy in Dunn chemotaxis chambers. PI3Kgamma(-/-) macrophages showed reduced migration speed and translocation, and no chemotaxis to MCP-1. Interestingly, there was also a reduction in migration efficiency in PI3Kgamma(-/-) macrophages stimulated with CSF-1 although early CSF-1R signalling was normal. These results indicate that the initial actin reorganization induced by either a GPCR or tyrosine kinase receptor agonist is not dependent on PI3Kgamma, whereas PI3Kgamma is needed for optimal migration of macrophages to either agonist.  相似文献   

6.
Addition of colony stimulating factor-1 (CSF-1) to macrophages stimulates the rapid, transient tyrosine phosphorylation, membrane association and multiubiquitination of Cbl (Wang et al. [1996] J. Biol. Chem. 271:17-20). Kinetic analysis reveals that the tyrosine phosphorylation of Cbl is coincident with its plasma membrane translocation and association with the activated tyrosine phosphorylated CSF-1 R, p85, Grb2, and tyrosine phosphorylated p58Shc and that these events precede the simultaneous multiubiquitination of Cbl and the CSF-1 R. Tyrosine phosphorylation and multiubiquitination of the cell surface CSF-1 R are stoichiometric and the multiubiquitinated CSF-1 R is degraded. Similarly, the membrane associated Cbl is almost stoichiometrically ubiquitinated, but the ubiquitinated Cbl is not degraded, being recovered, deubiquitinated, in the cytosol 3-10 min after stimulation at 37 degrees C. In the membrane fraction of cells stimulated at 4 degrees C, the association of p58Shc and Grb2 with Cbl is stable, whereas its association with Sos and p85 is transient and their dissociation occurs at the time CSF-1 R and Cbl multiubiquitination commence. The membrane translocation and the pattern of association of Sos with the CSF-1R, p85, Grb2, and p58Shc resemble those of Cbl but Sos is not tyrosine phosphorylated, nor multiubiquitinated and the coprecipitation of these proteins, other than Grb2, with Sos is much less. Complexes formed by Sos and Cbl are largely independent and membrane complexes of Cbl with other tyrosine phosphorylated proteins, p85 and Grb2 also contain CSF-1 R. These data raise the possibility that the predicted negative regulatory role of Cbl in macrophages is its enhancement of ligand-induced CSF-1 R internalization/degradation.  相似文献   

7.
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.  相似文献   

8.
Colony stimulating factor-1 (CSF-1)-dependent macrophages play crucial roles in the development and progression of several pathological conditions including atherosclerosis and breast cancer metastasis. Macrophages in both of these pathologies take up increased amounts of glucose. Since we had previously shown that CSF-1 stimulates glucose uptake by macrophages, we have now investigated whether glucose metabolism is required for the survival of CSF-1-dependent macrophages as well as examined the mechanism by which CSF-1 stimulates glucose uptake. Importantly, we found that CSF-1-induced macrophage survival required metabolism of the glucose taken up in response to CSF-1 stimulation. Kinetic studies showed that CSF-1 stimulated an increase in the number of glucose transporters at the plasma membrane, including Glut1. The uptake of glucose induced by CSF-1 required intact PI3K and PLC signalling pathways, as well as the downstream effectors Akt and PKC, together with a dynamic actin cytoskeleton. Expression of constitutively active Akt partially restored glucose uptake and macrophage survival in the absence of CSF-1, suggesting that Akt is necessary but not sufficient for optimal glucose uptake and macrophage survival. Taken together, these results suggest that CSF-1 regulates macrophage survival, in part, by stimulating glucose uptake via Glut1, and PI3K and PLC signalling pathways.  相似文献   

9.
10.
Ishihara D  Dovas A  Park H  Isaac BM  Cox D 《PloS one》2012,7(1):e30033
Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1.  相似文献   

11.
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.  相似文献   

12.
Colony-stimulating factor-1 (CSF-1), also known as macrophage colony-stimulating factor, controls the survival, proliferation, and differentiation of mono-nuclear phagocytes and regulates cells of the female reproductive tract. It appears to play an autocrine and/or paracrine role in cancers of the ovary, endometrium, breast, and myeloid and lymphoid tissues. Through alternative mRNA splicing and differential post-translational proteolytic processing, CSF-1 can either be secreted into the circulation as a glycoprotein or chondroitin sulfate-containing proteoglycan or be expressed as a membrane-spanning glycoprotein on the surface of CSF-1-producing cells. Studies with the op/op mouse, which possesses an inactivating mutation in the CSF-1 gene, have established the central role of CSF-1 in directly regulating osteoclastogenesis and macrophage production. CSF-1 appears to preferentially regulate the development of macrophages found in tissues undergoing active morphogenesis and/or tissue remodeling. These CSF-1 dependent macrophages may, via putative trophic and/or scavenger functions, regulate characteristics such as dermal thickness, male fertility, and neural processing. Apart from its expression on mononuclear phagocytes and their precursors, CSF-1 receptor (CSF-1R) expression on certain nonmononuclear phagocytic cells in the female reproductive tract and studies in the op/op mouse indicate that CSF-1 plays important roles in female reproduction. Restoration of circulating CSF-1 to op/op mice has preliminarily defined target cell populations that are regulated either humorally or locally by the synthesis of cell-surface CSF-1 or by sequestration of the CSF-1 proteoglycan. The CSF-1R is a tyrosine kinase encoded by the c-fms proto-oncogene product. Studies by several groups have used cells expressing either the murine or human CSF-1R in fibroblasts to pinpoint the requirement of kinase activity and the importance of various receptor tyrosine phosphorylation sites for signaling pathways stimulated by CSF-1. To investigate post-CSF-1R signaling in the macrophage, proteins that are rapidly phosphorylated on tyrosine in response to CSF-1 have been identified, together with proteins associated with them. Studies on several of these proteins, including protein tyrosine phosphatase 1C, the c-cbl proto-oncogene product, and protein tyrosine phosphatase-phi are discussed. Mol Reprod Dev 46:4–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages.  相似文献   

14.
Macrophages view as double agents in tumor progression. Trafficking of macrophages to the proximity of tumors is mediated by colony-stimulating factor-1 (CSF-1), a growth factor. In this study, we investigated the role of complement1q-binding protein (C1QBP)/ atypical protein kinase C ζ (PKCζ) in CSF-1-induced macrophage migration. Disruption of C1QBP expression impaired chemotaxis and adhesion of macrophage. Phosphorylation of PKCζ is an essential component in macrophage chemotaxis signaling pathway. C1QBP could interact with PKCζ in macrophage. C1QBP knockdown inhibited CSF-1 induced phosphorylation of PKCζ and integrin-β1. However, C1QBP knockdown didn’t affect the phosphorylation of PKCζ induced by MCP-1. Furthermore, CSF-1 from RCC cell condition medium promoted macrophage chemotaxis and adhesion. Taken together, our results demonstrated that C1QBP plays an essential role in CSF-1 induced migration of macrophages.  相似文献   

15.
16.
IFN gamma/LPS treatment increases macrophage tumoricidal and microbicidal activity and inhibits CSF-1-induced macrophage proliferation. The mechanism underlying the latter effect was investigated in the CSF-1-dependent mouse macrophage cell line, BAC-1.2F5. IFN-gamma and LPS together dramatically reduced the total number of CSF-1 receptors (CSF-1R) via selective degradation of the cell surface form. Processing and transport of intracellular CSF-1R to the cell surface were unaffected. IFN-gamma alone had no effect but significantly enhanced LPS-induced CSF-1R down-regulation. The reduction in CSF-1R number was protein kinase C-dependent and involved changes in serine phosphorylation of the receptor at different sites. CSF-1R down-modulation by this mechanism may be important in switching off the energy-consuming processes of CSF-1R-mediated proliferation and chemotaxis in activated macrophages.  相似文献   

17.
Macrophage actin-associated tyrosine phosphorylated protein (MAYP) belongs to the Pombe Cdc15 homology (PCH) family of proteins involved in the regulation of actin-based functions including cell adhesion and motility. In mouse macrophages, MAYP is tyrosine phosphorylated after activation of the colony-stimulating factor-1 receptor (CSF-1R), which also induces actin reorganization, membrane ruffling, cell spreading, polarization, and migration. Because MAYP associates with F-actin, we investigated the function of MAYP in regulating actin organization in macrophages. Overexpression of MAYP decreased CSF-1-induced membrane ruffling and increased filopodia formation, motility and CSF-1-mediated chemotaxis. The opposite phenotype was observed with reduced expression of MAYP, indicating that MAYP is a negative regulator of CSF-1-induced membrane ruffling and positively regulates formation of filopodia and directional migration. Overexpression of MAYP led to a reduction in total macrophage F-actin content but was associated with increased actin bundling. Consistent with this, purified MAYP bundled F-actin and regulated its turnover in vitro. In addition, MAYP colocalized with cortical and filopodial F-actin in vivo. Because filopodia are postulated to increase directional motility by acting as environmental sensors, the MAYP-stimulated increase in directional movement may be at least partly explained by enhancement of filopodia formation.  相似文献   

18.
The development of macrophages from myeloid progenitor cells is primarily controlled by the growth factor colony stimulating factor-1 (CSF-1) and its cognate receptor, a transmembrane tyrosine kinase encoded by the c-Fms proto-oncogene. The CSF-1 receptor exerts its biological effects on cells via a range of signaling proteins including Erk1/2 and Akt. Here we have investigated the potential involvement of the Src-like adapter protein (SLAP-2) in signaling by the CSF-1 receptor in mouse bone marrow-derived macrophages. RT-PCR analysis revealed constitutive expression of the SLAP-2 gene in bone marrow macrophages. Surprisingly, co-immunoprecipitation and GST binding experiments demonstrated that the CSF-1 receptor could bind to SLAP-2 in a ligand-independent manner. Furthermore, the binding of SLAP-2 to the CSF-1 receptor involved multiple domains of SLAP-2. SLAP-2 also bound c-Cbl, with the interaction being mediated, at least in part, by the unique C-terminal domain of SLAP-2. Overexpression of SLAP-2 in bone marrow macrophages partially suppressed the CSF-1-induced tyrosine phosphorylation and/or expression level of a approximately 80 kDa protein without affecting CSF-1-induced global tyrosine phosphorylation, or activation of Akt or Erk1/2. Significantly, CSF-1 stimulation induced serine phosphorylation of SLAP-2. Pharmacologic inhibition of specific protein kinases revealed that CSF-1-induced phosphorylation of SLAP-2 was dependent on JNK activity. Taken together, our results suggest that SLAP-2 could potentially be involved in signaling by the CSF-1 receptor.  相似文献   

19.
Macrophage colony stimulating factor (M-CSF or CSF-1) acts to regulate the development and function of cells of the macrophage lineage. Murine myeloid FDC-P1 cells transfected with the CSF-1 receptor (FD/WT) adopt a macrophage-like morphology when cultured in CSF-1. This process is abrogated in FDC-P1 cells transfected with the CSF-1 receptor with a tyrosine to phenyalanine substitution at position 807 (FD/807), suggesting that a molecular interaction critical to differentiation signaling is lost (Bourette, R. P., Myles, G. M., Carlberg, K., Chen, A. R., and Rohrschneider, L. R. (1995) Cell Growth Differ. 6, 631--645). A detailed examination of lysates of CSF-1-treated FD/807 cells by two-dimensional SDS-polyacrylamide gel electrophoresis (PAGE) revealed a number of proteins whose degree of tyrosine phosphorylation was modulated by the Y807F mutation. Included in this category were three phosphorylated proteins that co-migrated with p46/52(Shc). Immunoprecipitation, Western blotting, and in vitro binding studies suggest that they are indeed p46/52(Shc). A key regulator of differentiation in a number of cell systems, ERK was observed to exhibit an activity that correlated with the relative degree of differentiation induced by CSF-1 in the two cell types. Transfection of cells with a non-tyrosine-phosphorylatable form of p46/52(Shc) prevented the normally observed CSF-1-mediated macrophage differentiation as determined by adoption of macrophage-like morphology and expression of the monocyte/macrophage lineage cell surface marker, Mac-1. These results are the first to suggest that p46/52(Shc) may play a role in CSF-1-induced macrophage differentiation. Additionally, a number of proteins were identified by two-dimensional SDS-PAGE whose degree of tyrosine phosphorylation is also modulated by the Y807F substitution. This group of molecules may contain novel signaling molecules important in macrophage differentiation.  相似文献   

20.
Colony stimulating factor-1 (CSF-1) mediates its pleiotropic effects on macrophages through the CSF-1 receptor (CSF-1R), a receptor tyrosine kinase. Current models of CSF-1 signalling imply that the CSF-1R activates signalling pathways exclusively at the plasma membrane and the subsequent internalisation of the CSF-1R simply facilitates its lysosomal degradation in order to prevent on-going signalling. Here, we sought to establish if the CSF-1R may in fact continue to signal following its internalisation. Erk1/2, Akt and Stat3 activation were abrogated when the internalisation of the CSF-1R was impaired, with the effects on Stat3 distinct from those for Erk1/2 and Akt. Pharmacologic inhibition of the CSF-1R following its internalisation resulted in less sustained Erk1/2 and Akt activity, whereas Stat3 activity was unaffected. Significantly, the suppressive effects of the CSF-1R inhibitor on the up-regulation of gene expression by CSF-1 (e.g. cyclin D1 and Bcl-xL gene expression) were comparable irrespective of whether the inhibitor was added prior to CSF-1 stimulation or following the internalisation of the CSF-1R. Similarly, pharmacologic inhibition of Erk1/2 (or Akt) activity either prior to CSF-1 stimulation or subsequent to CSF-1R internalisation had comparable effects on the regulation of gene expression by CSF-1. Together, our data argue that key signalling responses to CSF-1 depend on the ability of the CSF-1R to signal from endosomes following its internalisation, thus adding an important spatiotemporal aspect to CSF-1R signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号