首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
C Kaur  E A Ling 《Acta anatomica》1991,142(2):118-125
The transformation of amoeboid microglial cells into ramified microglial cells in the brain of postnatal rats has been studied by labeling the cells with the isolectin Griffonia simplicifolia (GSA1-B4). The latter served as a specific membrane marker of the cell type. Thus, at the light-microscopic level, the amoeboid microglial cells in 1- to 5-day-old rats were intensely stained with GSA1-B4. All the stained cells appeared round. In 10-day-old rats, while most of the stained cells were round, some had assumed an oval appearance. In older rats, i.e. 15-22 days, all the stained cells became flattened or fusiform with long cytoplasmic processes. The present electron-microscopic study confirmed the above features but also added the fact that the reaction for GSA1-B4 was localized at the plasma membrane in the amoeboid microglial cells in all the age groups studied. The reaction for the isolectin was also detected in some vacuoles in the cytoplasm of the round cells. It was concluded from this study that the round amoeboid microglial cells differentiate to become the ramified microglia with age. In the course of this transformation, they retained specific membrane receptors for the isolectin which distinguished them from other glial cell types.  相似文献   

2.
Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid microglia, resulting in a significant iNOS upregulation.  相似文献   

3.
Microglia, the resident macrophage precursors of the brain, are necessary for the maintenance of tissue homeostasis and activated by a wide range of pathological stimuli. They have a key role in immune and inflammatory responses. Early microglia stem from primitive macrophages, however the transition from early motile forms to the ramified mature resident microglia has not been assayed in real time. In order to provide such an assay, we used zebrafish transgenic lines in which fluorescent reporter expression is driven by the promoter of 1 (mpeg1; Ellet et al. [2011]: Blood 117(4): e49–e56,). This enabled the investigation of the development of these cells in live, intact larvae. We show that microglia develop from highly motile amoeboid cells that are engaged in phagocytosis of apoptotic cell bodies into a microglial cell type that rapidly morphs back and forth between amoeboid and ramified morphologies. These morphing microglia eventually settle into a typical mature ramified morphology. Developing microglia frequently come into contact with blood capillaries in the brain, and also frequently contact each other. Up to 10 days postfertilization, microglia were observed to undergo symmetric division. In the adult optic tectum, the microglia are highly branched, resembling mammalian microglia. In addition, the mpeg1 transgene also labeled highly branched cells in the skin overlying the optic tectum from 8–9 days postfertilization, which likely represent Langerhans cells. Thus, the development of zebrafish microglia and their cellular interactions was studied in the intact developing brain in real time and at cellular resolution. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

4.
We have isolated a new microglial gene, mrf-1, which is upregulated on microglia in response to apoptosis of granule neurons in cerebellar cell cultures. We examined whether or not upregulation of MRF-1 is observed in response to necrotic neuronal death both in vivo and in vitro. Though MRF-1 was detected on ramified/resting microglia in the brain of normal adult rats, activated microglia in the region of the brain where neuronal damage was induced by ischemia were strongly immunostained with anti-MRF-1 anti-body. In the in vitro system, we confirmed, with immunocytochemistry or RT-PCR, that MRF-1 or mrf-1 mRNA were constitutively expressed in ramified microglia at significant but lower levels than in amoeboid one. Moreover, by Northern blot, it was ascertained that expression level of mrf-1 mRNA on microglia was markedly upregulated in response to glutamate-induced death of granule cells in a cerebellar cell culture. These results indicate the following: 1) expression of mrf-1 in microglia may be markedly enhanced upon not only apoptotic but also necrotic neuronal death, and 2) MRF-1 is, thus, an useful marker for identifying all types of microglia in vivo and in vitro.  相似文献   

5.
Microglia are dispersed throughout the central nervous system. Under physiological circumstances they display a 'ramified' resting phenotype. In different neuropathologies microglia reversibly transform into the activated form, an amoeboid phagocyte with a broad spectrum of immune effector functions. In this study, a coculture of porcine microglia and the pig renal epithelial cell line LLC-PK1 was used to investigate microglial cell biology. The morphology of the cocultures was elucidated as well as the functionality of the microglia cells by proliferation, superoxide and phagocytosis assays. Our results demonstrate that direct intercellular contact between the two cell types was necessary for microglia to acquire a ramified morphology. Moreover, the conditioned medium of the renal cells promoted proliferation of microglia, inhibited giant cell formation and stimulated microglia to retain their capability to generate superoxide and to perform phagocytosis. In conclusion, we have constructed a cell culture system showing differentiation of microglia in vitro and keeping them in optimal conditions.  相似文献   

6.
Our recent study reveals that Na?/H? exchanger isoform 1 (NHE-1) mediates H? extrusion during "respiratory bursting", which is important for microglial activation. In the present study, we further investigated whether NHE-1 plays a role in proinflammatory activation of microglia in vivo using a mouse model of transient focal cerebral ischemia and reperfusion (I/R). Activated microglial cells were identified by their expression of two microglial marker proteins (CD11b and Iba1) as well as by their transformation from a "ramified" to an "amoeboid" morphology. An immediate increase in activated microglial numbers was detected in the ipsilateral ischemic core area of NHE-1?/? brains at 1 hour (h) I/1 h R, which gradually decreased during 6-24 h I/R. This was followed by a sharp rise in microglial activation in the peri-infarct area and an increase in proinflammatory cytokine formation at 3 day after I/R. Interestingly, HOE 642 (a potent NHE-1 inhibitor) -treated or NHE-1 heterozygous (NHE-1?/?) mice exhibited less microglia activation, less NADPH oxidase activation, or a reduced proinflammatory response at 3-7 day after I/R. Blocking NHE-1 activity also significantly decreased microglial phagocytosis in vitro. In contrast, astrogliosis formation in the peri-infarct area was not affected by NHE-1 inhibition. Taken together, our results demonstrate that NHE-1 protein was abundantly expressed in activated microglia and astrocytes. NHE-1 inhibition reduced microglial proinflammatory activation following ischemia.  相似文献   

7.
Morphological studies on neuroglia   总被引:3,自引:0,他引:3  
The postnatal development of microglial cells was investigated in the neonatal rat brain by use of light- and electron microscopy, including enzyme-histochemical techniques. Microglial cells were selectively stained by demonstration of their nucleoside diphosphatase (NDPase) activity and classified into three types: 1) In the early postnatal period "primitive microglial cells" showing scantily ramified processes were found in the cerebral cortex, the hippocampal formation, and the hypothalamus. During the course of the first postnatal week the processes of this cell type developed gradually and the cells were transformed into typical ramified microglial cells, called "resting microglial cells". 2) "Amoeboid microglial cells "showing typical features of macrophages were characteristic of the cerebral white matter. 3) "Round microglial cells" possessing a round soma and few pseudopodia but no characteristic processes occurred in large numbers in the subventricular zone of the lateral ventricle and as single elements in the vicinity of blood vessels. Histochemically, thiamine pyrophosphatase (TPPase) was demonstrated only in the fully developed, ramified microglial cells ("resting microglial cells"), which could be readily observed in the central nervous tissue from the age of 14 day. "Round and amoeboid microglial cells" did not show TPPase activity and disappeared after 14 days of postnatal life. By use of electron microscopy, in neonatal rats NDPase activity was apparent in the plasma membrane of the three types of microglial cells ("primitive, round, and amoeboid" types). They showed basically similar submicroscopic characteristics, i.e., well-developed Golgi apparatus, long strands of rough-surfaced endoplasmic reticulum, single dense bodies and vacuoles, and numerous ribosomes. "Amoeboid microglial cells" were characterized by their well-developed cytoplasmic vacuoles and phagocytic inclusion bodies. The present study strongly suggests a mesodermal origin for these microglial elements.  相似文献   

8.
Activated microglia are thought to undergo apoptosis as a self-regulatory mechanism. To better understand molecular mechanisms of the microglial apoptosis, apoptosis-resistant variants of microglial cells were selected and characterized. The expression of lipocalin 2 (lcn2) was significantly down-regulated in the microglial cells that were resistant to NO-induced apoptosis. lcn2 expression was increased by inflammatory stimuli in microglia. The stable expression of lcn2 as well as the addition of rLCN2 protein augmented the sensitivity of microglia to the NO-induced apoptosis, while knockdown of lcn2 expression using short hairpin RNA attenuated the cell death. Microglial cells with increased lcn2 expression were more sensitive to other cytotoxic agents as well. Thus, inflammatory activation of microglia may lead to up-regulation of lcn2 expression, which sensitizes microglia to the self-regulatory apoptosis. Additionally, the stable expression of lcn2 in BV-2 microglia cells induced a morphological change of the cells into the round shape with a loss of processes. Treatment of primary microglia cultures with the rLCN2 protein also induced the deramification of microglia. The deramification of microglia was closely related with the apoptosis-prone phenotype, because other deramification-inducing agents such as cAMP-elevating agent forskolin, ATP, and calcium ionophore also rendered microglia more sensitive to cell death. Taken together, our results suggest that activated microglia may secrete LCN2 protein, which act in an autocrine manner to sensitize microglia to the self-regulatory apoptosis and to endow microglia with an amoeboid form, a canonical morphology of activated microglia in vivo.  相似文献   

9.
Microglia, the resident macrophages of the central nervous system (CNS), are activated by a myriad of signaling molecules including ATP, an excitatory neurotransmitter and neuron-glial signal with both neuroprotective and neurotoxic effects. The “microglial dysfunction hypothesis” of neurodegeneration posits that overactivated microglia have a reduced neuroprotective capacity and instead promote neurotoxicity. The chemokine fractalkine (FKN), one of only two chemokines constitutively expressed in the CNS, is neuroprotective in several in vivo and in vitro models of CNS pathology. It is possible, but not yet demonstrated, that high ATP concentrations induce microglial overactivation and apoptosis while FKN reduces ATP-mediated microglial overactivation and cytotoxicity. In the current study, we examined the effects of FKN on ATP-induced microglial apoptosis and the underlying mechanisms in the BV-2 microglial cell line. Exposure to ATP induced a dose-dependent reduction in BV-2 cell viability. Prolonged exposure to a high ATP concentration (3 mM for 2 h) transformed ramified (quiescent) BV-2 cells to the amoebic state, induced apoptosis, and reduced Akt phosphorylation. Pretreatment with FKN significantly inhibited ATP-induced microglial apoptosis and transformed amoebic microglia to ramified quiescent cells. These protective effects were blocked by chemical inhibition of PI3 K, strongly implicating the PI3 K/Akt signaling pathway in FKN-mediated protection of BV-2 cells from cytotoxic ATP concentrations. Prevention of ATP-induced microglial overactivation and apoptosis may enhance the neuroprotective capacity of these cells against both acute insults and chronic CNS diseases.  相似文献   

10.
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.  相似文献   

11.
Based on previous observations in tissue culture, we investigated pinocytotic activity as a potential cell marker for brain microglia. This functional activity was assessed in three different preparations derived from rat: primary cultures of mixed cerebral cortical cells, tissue slabs of whole cerebrum, and cultures of isolated or enriched microglial cells. Each preparation was incubated with the fluorescent dye lucifer yellow as a soluble tracer and then processed for light microscopy. Under the conditions utilized, ramified microglia specifically exhibited differentially high pinocytotic labeling in all cases; the dye was mainly localized within the cell somata, where it was sequestered in pinocytotic vesicles. In each preparation, the identity of the labeled cell population was confirmed as microglia through immunohistochemical staining with the monoclonal antibody (MAb) OX-42, a specific microglial marker. Therefore, pinocytotic labeling is proposed as a select cell marker for microglia, which may be extremely useful in the identification and study of ramified microglial cells.  相似文献   

12.
During early development of the central nervous system (CNS), a subset of yolk‐sac derived myeloid cells populate the brain and provide the seed for the microglial cell population, which will self‐renew throughout life. As development progresses, individual microglial cells transition from a phagocytic amoeboid state through a transitional morphing phase into the sessile, ramified, and normally nonphagocytic microglia observed in the adult CNS under healthy conditions. The molecular drivers of this tissue‐specific maturation profile are not known. However, a survey of tissue resident macrophages identified miR‐124 to be expressed in microglia. In this study, we used transgenic zebrafish to overexpress miR‐124 in the mpeg1 expressing yolk‐sac‐derived myeloid cells that seed the microglia. In addition, a systemic sponge designed to neutralize the effects of miR‐124 was used to assess microglial development in a miR‐124 loss‐offunction environment. Following the induction of miR‐124 overexpression, microglial motility and phagocytosis of apoptotic cells were significantly reduced. miR‐124 overexpression in microglia resulted in the accumulation of residual apoptotic cell bodies in the optic tectum, which could not be achieved by miR‐124 overexpression in differentiated neurons. Conversely, expression of the miR‐124 sponge caused an increase in the motility of microglia and transiently rescued motility and phagocytosis functions when activated simultaneously with miR‐124 overexpression. This study provides in vivo evidence that miR‐124 activity has a key role in the development of functionally mature microglia. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 507–518, 2016  相似文献   

13.
Li F  Lu J  Wu CY  Kaur C  Sivakumar V  Sun J  Li S  Ling EA 《Journal of neurochemistry》2008,106(5):2093-2105
Microglial cells are endowed with different potassium ion channels but their expression and specific functions have remained to be fully clarified. This study has shown Kv1.2 expression in the amoeboid microglia in the rat brain between 1 (P1) and 10 (P10) days of age. Kv1.2 expression was localized in the ramified microglia at P14 and was hardly detected at P21. In postnatal rats exposed to hypoxia, Kv1.2 immunoreactivity in microglia was markedly enhanced. Quantitative RT-PCR analysis confirmed Kv1.2 mRNA expression in microglial cells in vitro . It was further shown that Kv1.2 and protein expression coupled with that of interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) was significantly increased when the cells were subjected to hypoxia. The same increase was observed in cells exposed to adenosine 5'-triphosphate (ATP) and lipopolysaccharide (LPS). Concomitantly, the intracellular potassium concentration decreased significantly. Blockade of Kv1.2 channel with rTityustoxin-Kα (TsTx) resulted in partial recovery of intracellular potassium concentration accompanied by a reduced expression of IL-1β and TNF-α mRNA and protein expression and intracellular reactive oxygen species (ROS) production. We conclude that Kv1.2 in microglia modulates IL-1β and TNF-α expression and ROS production probably by regulating the intracellular potassium concentration.  相似文献   

14.
Microglia are mononuclear phagocytes of the central nervous system and are considered to derive from circulating bone marrow progenitors that colonize the developing human nervous system in the second trimester. They first appear as ameboid forms and progressively differentiate to process-bearing "ramified" forms with maturation. Signals driving this transformation are known to be partly derived from astrocytes. In this investigation we have used cocultures of astrocytes and microglia to demonstrate the relationship between motility and morphology of microglia associated with signals derived from astrocytes. Analysis of progressive cultures using time-lapse video microscopy clearly demonstrates the dynamic nature of microglia. We observe that ameboid microglial cells progressively ramify when cocultured with astrocytes, mirroring the "differentiation" of microglia in situ during development. We further demonstrate that individual cells undergo morphological transformations from "ramified" to "bipolar" to "tripolar" and "ameboid" states in accordance with local environmental cues associated with astrocytes in subconfluent cultures. Remarkably, cells are still capable of migration at velocities of 20-35 microm/h in a fully ramified state overlying confluent astrocytes, as determined by image analysis of motility. This is in keeping with the capacity of microglia for a rapid response to inflammatory cues in the CNS. We also demonstrate selective expression of the chemokines MIP-1alpha and MCP-1 by confluent human fetal astrocytes in cocultures and propose a role for these chemotactic cytokines as regulators of microglial motility and differentiation. The interchangeable morphological continuum of microglia supports the view that these cells represent a single heterogeneous population of resident mononuclear phagocytes capable of marked plasticity.  相似文献   

15.
This study examined the microglial reaction in a simulated thrombo-embolus ischaemia in rats given an intracarotid injection of a suspension of homologous blood clot. All rats including the controls receiving vehicle injection were perfused at 5 hours, and 1, 3 and 7 days post-operation. The brains were removed and processed for immunohistochemistry using a panel of monoclonal antibodies: OX-42, OX-18 and OX-6 for labeling of microglia. In rats given saline injection OX-42 immunoreactive microglial cells were observed to be distributed quite evenly throughout the whole brain. When injection of clot suspension was given, microglial cells responded vigorously, particularly in the ipsilateral hippocampus. Microglial reaction was also detected in the ipsilateral cerebral cortex, caudate as well as septal nuclei. The majority of the detected reactive microglial cells were hypertrophied showing thick or stout processes. Some rod-like and amoeboid microglia were also observed. Rarely did the reactive microglia express OX-6 immunoreactivity. All microglial cells were unreactive for OX-18. The actual mechanisms leading to the microglial activation as well as functions of reactive microglia in focal cerebral ischaemia remain speculative. In the absence of direct evidence, it could only be suggested that they may act as sensor cells for detection of subtle alterations in the microenvironment, probably in response to focal ischaemia and/or leakage of serum-derived factors induced by thrombo-embolus stroke.  相似文献   

16.
Microglia: phagocyte and glia cell   总被引:10,自引:0,他引:10  
Microglia are the resident immune cells of the brain, and are located within the brain parenchyme behind the blood-brain barrier. They originate from mesodermal hemapoietic precursors and are slowly turned over and replenished by proliferation in the adult central nervous system. In the healthy brain resting, ramified microglia function as supportive glia cells, and their activation status is regulated by neurons through soluble mediators and cell-cell contact. However, in response to brain pathology microglia become activated: acquisition of innate immune cell functions render microglia competent to react towards brain injury through tissue repair or induction of immune responses. In certain pathological conditions, however, microglia activation may sustain a chronic inflammation of the brain, leading to neuronal dysfunction and cell death. This might be mediated by the microglial release of extracellular toxic reactive oxygen and nitrogen species. Nevertheless, in the future microglia may potentially be harnessed for therapeutical purposes.  相似文献   

17.
3-O-caffeoylquinic acid (3-CQA) is an isomer of chlorogenic acid, which has been shown to regulate lipopolysaccharide-induced tumor necrosis factor production in microglia. Whereas overactivation of microglia is associated with neuronal loss in brain diseases via reactive oxygen species (ROS) production and glutamate excitotoxicity, naïve (nonactivated) microglia are believed to generate little ROS under basal conditions, contributing to the modulation of synaptic activity and nerve tissue repair. However, the signaling pathways controlling basal ROS homeostasis in microglial cells are still poorly understood. Here we used time-lapse microscopy coupled with highly sensitive FRET biosensors (for detecting c-Src activation, ROS generation, and glutamate release) and lentivirus-mediated shRNA delivery to study the pathways involved in antioxidant-regulated ROS generation and how this associates with microglia-induced neuronal cell death. We report that 3-CQA abrogates the acquisition of an amoeboid morphology in microglia triggered by Aβ oligomers or the HIV Tat peptide. Moreover, 3-CQA deactivates c-Src tyrosine kinase and abrogates c-Src activation during proinflammatory microglia stimulation, which shuts off ROS production in these cells. Moreover, forced increment of c-Src catalytic activity by overexpressing an inducible c-Src heteromerization construct in microglia increases ROS production, abrogating the 3-CQA effects. Whereas oxidant (hydrogen peroxide) stimulation dramatically enhances glutamate release from microglia, such release is diminished by the 3-CQA inhibition of c-Src/ROS generation, significantly alleviating cell death in cultures from embryonic neurons. Overall, we provide further mechanistic insight into the modulation of ROS production in cortical microglia, indicating antioxidant-regulated c-Src function as a pathway for controlling microglia-triggered oxidative damage.  相似文献   

18.
Brain microglial morphology relates to function, with ramified microglia surveying the micro-environment and amoeboid microglia engulfing debris. One subgroup of microglia, rod microglia, have been observed in a number of pathological conditions, however neither a function nor specific morphology has been defined. Historically, rod microglia have been described intermittently as cells with a sausage-shaped soma and long, thin processes, which align adjacent to neurons. More recently, our group has described rod microglia aligning end-to-end with one another to form trains adjacent to neuronal processes. Confusion in the literature regarding rod microglia arises from some reports referring to the sausage-shaped cell body, while ignoring the spatial distribution of processes. Here, we systematically define the morphological characteristics of rod microglia that form after diffuse brain injury in the rat, which differ morphologically from the spurious rod microglia found in uninjured sham. Rod microglia in the diffuse-injured rat brain show a ratio of 1.79±0.03 cell length∶cell width at day 1 post-injury, which increases to 3.35±0.05 at day 7, compared to sham (1.17±0.02). The soma length∶width differs only at day 7 post-injury (2.92±0.07 length∶width), compared to sham (2.49±0.05). Further analysis indicated that rod microglia may not elongate in cell length but rather narrow in cell width, and retract planar (side) processes. These morphological characteristics serve as a tool for distinguishing rod microglia from other morphologies. The function of rod microglia remains enigmatic; based on morphology we propose origins and functions for rod microglia after acute neurological insult, which may provide biomarkers or therapeutic targets.  相似文献   

19.
Tubulin folding cofactors B (TBCB) and E (TBCE) are alpha-tubulin binding proteins that, together with Arl2 and cofactors D (TBCD), A (TBCA or p14) and C (TBCC), participate in tubulin biogenesis. TBCD and TBCE have also been implicated in microtubule dynamics through regulation of tubulin heterodimer dissociation. Understanding the in vivo function of these proteins will shed light on the Kenny-Caffey/Sanjad-Sakati syndrome, an important human disorder associated with TBCE. Here we show that, when overexpressed, TBCB depolymerizes microtubules. We found that this function is based on the ability of TBCB to form a binary complex with TBCE that greatly enhances the efficiency of this cofactor to dissociate tubulin in vivo and in vitro. We also show that TBCE, TBCB and alpha-tubulin form a ternary complex after heterodimer dissociation, whereas the free beta-tubulin subunit is recovered by TBCA. These complexes might serve to escort alpha-tubulin towards degradation or recycling, depending on the cell requirements.  相似文献   

20.
Microglia, the primary resident immune cells of the central nervous system (CNS), exhibit dynamic behavior involving rapid process motility and cellular migration that is thought to underlie key functions of immune surveillance and tissue repair. Although age-related changes in microglial activation have been implicated in the pathogenesis of neurodegenerative diseases of aging, how dynamic behavior in microglia is influenced by aging is not fully understood. In this study, we employed live imaging of retinal microglia in situ to compare microglial morphology and behavioral dynamics in young and aged animals. We found that aged microglia in the resting state have significantly smaller and less branched dendritic arbors, and also slower process motilities, which probably compromise their ability to survey and interact with their environment continuously. We also found that dynamic microglial responses to injury were age-dependent. While young microglia responded to extracellular ATP, an injury-associated signal, by increasing their motility and becoming more ramified, aged microglia exhibited a contrary response, becoming less dynamic and ramified. In response to laser-induced focal tissue injury, aged microglia demonstrated slower acute responses with lower rates of process motility and cellular migration compared with young microglia. Interestingly, the longer term response of disaggregation from the injury site was retarded in aged microglia, indicating that senescent microglial responses, while slower to initiate, are more sustained. Together, these altered features of microglial behavior at rest and following injury reveal an age-dependent dysregulation of immune response in the CNS that may illuminate microglial contributions to age-related neuroinflammatory degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号