首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CXCL10-CXCR3 axis plays a pivotal role in cardiac allograft rejection, so that targeting CXCL10 without inducing generalized immunosuppression may be of therapeutic significance in allotransplantation. Since the role of resident cells in cardiac rejection is still unclear, we aimed to establish reliable human cardiomyocyte cultures to investigate Th1 cytokine-mediated response in allograft rejection. We used human fetal cardiomyocytes (Hfcm) isolated from fetal hearts, obtained after legal abortions. Hfcm expressed specific cardiac lineage markers, specific cardiac structural proteins, typical cardiac currents and generated ventricular action potentials. Thus, Hfcm represent a reliable in vitro tool for allograft rejection research, since they resemble the features of mature cells. Hfcm secreted CXCL10 in response to IFNgamma and TNFalphaalpha; this effect was magnified by cytokine combination. Cytokine synergy was associated to a significant TNFalpha-induced up-regulation of IFNgammaR. The response of Hfcm to some currently used immunosuppressive drugs compared to rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist and Th1-mediated response inhibitor, was also evaluated. Only micophenolic acid and rosiglitazone halved CXCL10 secretion by Hfcm. Given the pivotal role of IFNgamma-induced chemokines in Th1-mediated allograft rejection, these preliminary results suggest that the combined effects of immunosuppressive agents and rosiglitazone could be potentially beneficial to patients receiving heart transplants.  相似文献   

2.

Objective

This study aims to investigate in vitro the effect of the VDR agonist BXL-01-0029 onto IFNγ/TNFα-induced CXCL10 secretion by human skeletal muscle cells compared to elocalcitol (VDR agonist), methylprednisolone, methotrexate, cyclosporin A, infliximab and leflunomide; to assess in vivo circulating CXCL10 level in subjects at time of diagnosis with IMs, before therapy, together with TNFα, IFNγ, IL-8, IL-6, MCP-1, MIP-1β and IL-10, vs. healthy subjects.

Methods

Human fetal skeletal muscle cells were used for in vitro studies; ELISA and Bio-Plex were used to measure cell supernatant and IC50 determination or serum cytokines; Western blot and Bio-Plex were for cell signaling analysis.

Results

BXL-01-0029 decreased with the highest potency IFNγ/TNFα-induced CXCL10 protein secretion and targeted cell signaling downstream of TNFα in human skeletal muscle cells; CXCL10 level was the highest in sera of subjects diagnosed with IMs before therapy and the only one significantly different vs. healthy controls.

Conclusions

Our in vitro and in vivo data, while confirm the relevance of CXCL10 in IMs, suggested BXL-01-0029 as a novel pharmacological tool for IM treatment, hypothetically to be used in combination with the current immunosuppressants to minimize side effects.  相似文献   

3.
Dendritic cells (DCs) not only induce but also modulate T cell activation. 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] induces DCs with a tolerogenic phenotype, characterized by decreased expression of CD40, CD80, and CD86 costimulatory molecules, low IL-12 and enhanced IL-10 secretion. We have found that a short treatment with 1,25(OH)(2)D(3) induces tolerance to fully mismatched mouse islet allografts that is stable to challenge with donor-type spleen cells and allows acceptance of donor-type vascularized heart grafts. This effect is enhanced by co-administration of mycophenolate mofetil (MMF), a selective inhibitor of T and B cell proliferation that has also effects similar to 1,25(OH)(2)D(3) on DCs. Graft acceptance is associated with an increased percentage of CD4(+)CD25(+) regulatory cells in the spleen and in the draining lymph node that can protect 100% of syngeneic recipients from islet allograft rejection. CD4(+)CD25(+) cells, able to inhibit the T cell response to a pancreatic autoantigen and to significantly delay disease transfer by pathogenic CD4(+)CD25(-) cells, are also induced by treatment of adult nonobese diabetic (NOD) mice with 1,25-dihydroxy-16,23Z-diene-26,27-hexafluoro-19-nor vitamin D(3) (BXL-698). This treatment arrests progression of insulitis and Th1 cell infiltration, and inhibits diabetes development at non-hypercalcemic doses. The enhancement of CD4(+)CD25(+) regulatory T cells, able to mediate transplantation tolerance and to arrest type 1 diabetes development by a short oral treatment with VDR ligands, suggests possible clinical applications of this approach.  相似文献   

4.
The active form of vitamin D(3), 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], modulates proliferation and induces differentiation of many cancer cells. A new class of analogs of vitamin D(3) has been synthesized, having two side-chains attached to carbon-20 (Gemini) and deuterium substituted on one side-chain. We have examined six of these analogs for their ability to inhibit growth of myeloid leukemia (HL-60), prostate (LNCaP, PC-3, DU145), lung (H520), colon (HT-29), and breast (MCF-7) cancer cell lines. Dose-response clonogenic studies showed that all six analogs had greater antiproliferative activities against cancer cells than 1,25(OH)(2)D(3). Although they had similar potency, the most active of these analogs was BXL-01-0120. BXL-01-0120 was 529-fold more potent than 1,25(OH)(2)D(3) in causing 50% clonal growth inhibition (ED(50)) of HL-60 cells. Pulse-exposure studies demonstrated that exposure to BXL-01-120 (10(-9)M, 48h) resulted in 85% clonal inhibition of HL-60 growth. BXL-01-0120 (10(-11)M, 4 days) induced the differentiation marker, CD11b. Also, morphologically differentiation was more prominent compared to 1,25(OH)(2)D(3). Annexin V assay showed that BXL-01-0120 (10(-10)M, 4 days) induced significantly (p<0.05) more apoptosis than 1,25(OH)(2)D(3). In summary, these analogs have a unique structure resulting in extremely potent inhibition of clonal proliferation of various types of cancer cells, especially HL-60 cells.  相似文献   

5.
1alpha,25-dihydroxyvitamin D3, the active form of vitamin D3, and mycophenolate mofetil, a selective inhibitor of T and B cell proliferation, modulate APC function and induce dendritic cells (DCs) with a tolerogenic phenotype. Here we show that a short treatment with these agents induces tolerance to fully mismatched mouse islet allografts that is stable to challenge with donor-type spleen cells and allows acceptance of donor-type vascularized heart grafts. Peritransplant macrophages and DCs from tolerant mice express down-regulated CD40, CD80, and CD86 costimulatory molecules. In addition, DCs from the graft area of tolerant mice secrete, upon stimulation with CD4+ cells, 10-fold lower levels of IL-12 compared with DCs from acutely rejecting mice, and induce a CD4+ T cell response characterized by selective abrogation of IFN-gamma production. CD4+ but not CD8+ or class II+ cells from tolerant mice, transferred into naive syngeneic recipients, prevent rejection of donor-type islet grafts. Graft acceptance is associated with impaired development of IFN-gamma-producing type 1 CD4+ and CD8+ cells and an increased percentage of CD4+CD25+ regulatory cells expressing CD152 in the spleen and in the transplant-draining lymph node. Transfer of CD4+CD25+ cells from tolerant but not naive mice protects 100% of the syngeneic recipients from islet allograft rejection. These results demonstrate that a short treatment with immunosuppressive agents, such as 1alpha,25-dihydroxyvitamin D3/mycophenolate mofetil, induces tolerance to islet allografts associated with an increased frequency of CD4+CD25+ regulatory cells that can adoptively transfer transplantation tolerance.  相似文献   

6.
CXCL11 is thought to play a critical role in allograft rejection. To clarify the role of CXCL11 in the rat transplantation model, we cloned CXCL11 cDNA from rat liver tissue and used it to study CXCL11 structure, function and expression. The rat CXCL11 gene encodes a protein of 100 amino acids and spans approximately a 2.8 kb DNA segment containing 4 exons in the protein coding region. Tissue distribution of rat CXCL11 was analyzed by quantitative RT-PCR and showed that rat CXCL11 mRNA is expressed in various tissues and, in particular, at high levels in the spleen and lymph nodes. COS-1 cells were transfected with a plasmid vector encoding rat CXCL11 and used to study CXCL11 effects on cell migration and internalization of CXCR3, the CXCL11 receptor. The recombinant CXCL11 showed chemotactic properties and induced CXCR3 internalization in CD4+ T cells. Expression of CXCL11 mRNA also was measured in rat acute (ACI to LEW) and chronic (LEW to F344) heart transplant rejection models. CXCL11 mRNA expression in allografts increased in both models, compared with controls, and was primarily observed in infiltrating macrophages and donor endothelial cells. These results indicate that, like the other CXCR3 chemokines, rat CXCL11 seems to have a role in the homing of CD4+ T cells in both acute and chronic rejection models of heart allotransplantation.  相似文献   

7.
1 Alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D3, is a potent immunomodulatory agent. Here we show that dendritic cells (DCs) are major targets of 1,25(OH)2D3-induced immunosuppressive activity. 1,25(OH)2D3 prevents the differentiation in immature DCs of human monocytes cultured with GM-CSF and IL-4. Addition of 1,25(OH)2D3 during LPS-induced maturation maintains the immature DC phenotype characterized by high mannose receptor and low CD83 expression and markedly inhibits up-regulation of the costimulatory molecules CD40, CD80, and CD86 and of class II MHC molecules. This is associated with a reduced capacity of DCs to activate alloreactive T cells, as determined by decreased proliferation and IFN-gamma secretion in mixed leukocyte cultures. 1, 25(OH)2D3 also affects maturing DCs, leading to inhibition of IL-12p75 and enhanced IL-10 secretion upon activation by CD40 ligation. In addition, 1,25(OH)2D3 promotes the spontaneous apoptosis of mature DCs. The modulation of phenotype and function of DCs matured in the presence of 1,25(OH)2D3 induces cocultured alloreactive CD4+ cells to secrete less IFN-gamma upon restimulation, up-regulate CD152, and down-regulate CD154 molecules. The inhibition of DC differentiation and maturation as well as modulation of their activation and survival leading to T cell hyporesponsiveness may explain the immunosuppressive activity of 1, 25(OH)2D3.  相似文献   

8.
The action of vitamin D(3) on Langerhans cells (LCs) is not well understood. Using highly purified murine LCs (>95%), we investigated the direct action of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) on their functions. 1,25(OH)(2)D(3) inhibited the expression of cell surface molecules including I-A(d), CD40, CD80, and CD86, leading to impaired ability of LCs to stimulate allogenic T cells in the mixed leukocyte reaction. Furthermore, this reagent inhibited chemotaxis of LCs to CCL21 and their survival. Interestingly, 1,25(OH)(2)D(3) reduced the IL-10 production by LCs, whereas the production of IL-6 and IL-12p40 upon activation by CD40 ligation was enhanced. With regard to inflammatory cytokines and chemokines, 1,25(OH)(2)D(3) upregulated the production of IL-1beta, CCL3, CCL4, and CCL5. The production of Th2-type chemokines, represented by CL17 and CCL22, was inhibited, whereas IFN-gamma-triggered production of Th1-type chemokines, represented by CXCL9, CXCL10, and CXCL11, was augmented. These data indicate that the mode of regulation of cytokine and chemokine production in association with 1,25(OH)(2)D(3) treatment seems to be another characteristic discriminating LCs from classical myeloid dendritic cells.  相似文献   

9.
Although transplantation is the common treatment for end-stage renal failure, allograft rejection and marked morbidity from the use of immunosuppressive drugs remain important limitations. A major challenge in the field is to identify easy, reliable and noninvasive biomarkers allowing the prediction of deleterious alloreactive immune responses and the tailoring of immunosuppressive therapy in individuals according to the rejection risk. In this study, we first established that the expression of the RC isoform of the CD45 molecule (CD45RC) on CD4 and CD8 T cells from healthy individuals identifies functionally distinct alloreactive T cell subsets that behave differently in terms of proliferation and cytokine secretion. We then investigated whether the frequency of the recipients CD45RC T cell subsets before transplantation would predict acute graft rejection in a cohort of 89 patients who had undergone their first kidney transplantation. We showed that patients exhibiting more than 54.7% of CD8 CD45RChigh T cells before transplantation had a 6 fold increased risk of acute kidney graft rejection. In contrast, the proportions of CD4 CD45RC T cells were not predictive. Thus, a higher risk of acute rejection of human kidney allografts can be predicted from the level of CD45RC expressed by the recipients’ CD8 T cells.  相似文献   

10.
转移和细胞浸润是实体癌和淋巴癌治疗的难点,也是疾病复发和死亡的主要原因。癌细胞的迁移是肿瘤转移和侵袭的前提。CXCL12-CXCR4通路在实体瘤和白血病的发病中发挥重要作用。CXCL12与其受体CXCR4之间的相互作用可以激活多种信号通路,调节不同的生理和病理生理过程。因此,阻断CXCL12-CXCR4的结合和/或下游通路在治疗各种疾病和癌症方面具有临床益处。目前,已发现一些CXCL12和CXCR4拮抗剂,并通过研究证实其在抗肿瘤活性方面取得了令人鼓舞的结果;但这些药物由于其严重的毒副作用未能大规模应用于临床患者。迫切需要研发新型CXCL12-CXCR4轴拮抗剂以治疗肿瘤。本文综述了CXCR4通路在实体肿瘤和白血病中的最新研究进展,并讨论了CXCR4通路在实体肿瘤和白血病中的治疗价值和未来的研究方向。  相似文献   

11.
In a clinical phase I/II trial, pediatric patients with high-risk malignancies were treated with ex vivo IL-2-stimulated donor natural killer (NK) cells after transplantation with haploidentical stem cells. To evaluate the potential negative effects of the immunosuppressive drug mycophenolate mofetil (MMF) used for immunotherapy, the functionality and signaling of ex vivo NK cells was investigated. Our results show that during NK cell expansion, long-term (9 days) incubation with mycophenolic acid (MPA), the active metabolite of MMF, in therapeutically relevant concentrations led to the severe inhibition of NK cell proliferation. This correlated with a significantly reduced cytokine/chemokine secretion and the inhibited acquisition of surface receptors regarding cytotoxicity (e.g., NKp30, NKp44, NKp46, NKG2D), adhesion/migration (e.g., ICAM-1/CD54, LFA-1/CD11a, CD62L, CXCR3) and activation (e.g., CD25). Moreover, MPA prevented phosphorylation of the central signaling molecules STAT-3/-4/-5, AKT and ERK1/2. In contrast, short-term (24 h) MPA incubation of IL-2-stimulated NK cells had no or only marginal effects on the activated NK cell phenotype, including receptor expression, cytokine/chemokine secretion and intracellular signaling. Further, short-term MPA incubation only moderately affected the highly cytotoxic activity of previously IL-2-stimulated NK cells. In conclusion, while long-term MPA incubation significantly compromised ex vivo NK cell functionality, previously IL-2-activated NK cells seemed to be rather resistant to short-term MPA treatment. This finding supports the use of IL-2-activated NK cells as immunotherapy, especially for patients treated with MMF after haploidentical stem cell transplantation.  相似文献   

12.
Th1- and Th2-polarized immune responses are crucial in the defense against pathogens but can also promote autoimmunity and allergy. The chemokine receptors CXCR3 and CCR4 have been implicated in differential trafficking of IFN-gamma- and IL-4-producing T cells, respectively, but also in tissue and inflammation-specific homing independent of cytokine responses. Here, we tested whether CD4+ T cells isolated from murine tissues under homeostatic or inflammatory conditions exhibit restricted patterns of chemotactic responses that correlate with their production of IFN-gamma, IL-4, or IL-10. In uninfected mice, IL-4-producing T cells preferentially migrated to the CCR4 ligand, CCL17, whereas IFN-gamma-expressing T cells as well as populations of IL-4+ or IL-10+ T cells migrated to the CXCR3 ligand, CXCL9. All cytokine-producing T cell subsets strongly migrated to the CXCR4 ligand, CXCL12. We assessed chemotaxis of T cells isolated from mice infected with influenza A virus or the nematode Nippostrongylus brasiliensis, which induce a strong Th1 or Th2 response in the lung, respectively. Unexpectedly, the chemotactic responses of IL-4+ T cells and T cells expressing the immunosuppressive cytokine IL-10 were influenced not only by the strongly Th1- or Th2-polarized environments but also by their anatomical localization, i.e., lung or spleen. In contrast, IFN-gamma+ T cells exhibited robust chemotaxis toward CXCL9 and had the most consistent migration pattern in both infection models. The results support a model in which the trafficking responses of many effector and regulatory T cells are regulated as a function of the infectious and tissue environments.  相似文献   

13.

Background

Regulation of immune responses is critical for controlling inflammation and disruption of this process can lead to tissue damage. We reported that CXCL13 was induced in fallopian tube tissue following C. trachomatis infection. Here, we examined the influence of the CXCL13-CXCR5 axis in chlamydial genital infection.

Methodology and Principal Findings

Disruption of the CXCL13-CXCR5 axis by injecting anti-CXCL13 Ab to BALB/c mice or using Cxcr5−/− mice increased chronic inflammation in the upper genital tract (UGT; uterine horns and oviducts) after Chlamydia muridarum genital infection (GT). Further studies in Cxcr5−/− mice showed an elevation in bacterial burden in the GT and increased numbers of neutrophils, activated DCs and activated NKT cells early after infection. After resolution, we noted increased fibrosis and the accumulation of a variety of T cells subsets (CD4-IFNγ, CD4-IL-17, CD4-IL-10 & CD8-TNFα) in the oviducts. NKT cell depletion in vitro reduced IL-17α and various cytokines and chemokines, suggesting that activated NKT cells modulate neutrophils and DCs through cytokine/chemokine secretion. Further, chlamydial glycolipids directly activated two distinct types of NKT cell hybridomas in a cell-free CD1d presentation assay and genital infection of Cd1d−/− mice showed reduced oviduct inflammation compared to WT mice. CXCR5 involvement in pathology was also noted using single-nucleotide polymorphism analysis in C. trachomatis infected women attending a sub-fertility clinic. Women who developed tubal pathology after a C. trachomatis infection had a decrease in the frequency of CXCR5 SNP +10950 T>C (rs3922).

Conclusions/Significance

These experiments indicate that disruption of the CXCL13-CXCR5 axis permits increased activation of NKT cells by type I and type II glycolipids of Chlamydia muridarum and results in UGT pathology potentially through increased numbers of neutrophils and T cell subsets associated with UGT pathology. In addition, CXCR5 appears to contribute to inter-individual differences in human tubal pathology following C. trachomatis infection.  相似文献   

14.
IL-10 has potent immunosuppressive properties, and IL-10-producing CD4+ Tr1 cells have been characterized as regulators of Th1-mediated immunity. In this study, using a s.c. model of glioma cell growth in mice, we demonstrate that CD4+, but not CD8+, T cells play a critical role in tumor rejection following vaccination with irradiated glioma cells. Surprisingly, glioma-specific CD4+ T cells produce IL-10 but neither IL-4 nor IFN-gamma, and glioma rejection is compromised in IL-10(-/-) hosts. Hence, our findings demonstrate that IL-10-producing CD4+ T cells can manifest antitumor functions and suggest that IL-10 may have proinflammatory effects in disease states.  相似文献   

15.
16.
Chemokines have a pivotal role in the mobilization and activation of specific leukocyte subsets in acute allograft rejection. However, the role of specific chemokines and chemokine receptors in islet allograft rejection has not been fully elucidated. We now show that islet allograft rejection is associated with a steady increase in intragraft expression of the chemokines CCL8 (monocyte chemoattractant protein-2), CCL9 (monocyte chemoattractant protein-5), CCL5 (RANTES), CXCL-10 (IFN-gamma-inducible protein-10), and CXCL9 (monokine induced by IFN-gamma) and their corresponding chemokine receptors CCR2, CCR5, CCR1, and CXCR3. Because CCR2 was found to be highly induced, we tested the specific role of CCR2 in islet allograft rejection by transplanting fully MHC mismatched islets from BALB/c mice into C57BL/6 wild-type (WT) and CCR2-deficient mice (CCR2-/-). A significant prolongation of islet allograft survival was noted in CCR2-/- recipients, with median survival time of 24 and 12 days for CCR2-/- and WT recipients, respectively (p < 0.0001). This was associated with reduction in the generation of CD8+, but not CD4+ effector alloreactive T cells (CD62L(low)CD44(high)) in CCR2-/- compared with WT recipients. In addition, CCR2-/- recipients had a reduced Th1 and increased Th2 alloresponse in the periphery (by ELISPOT analysis) as well as in the grafts (by RT-PCR). However, these changes were only transient in CCR2-/- recipients that ultimately rejected their grafts. Furthermore, in contrast to the islet transplants, CCR2 deficiency offered only marginal prolongation of heart allograft survival. This study demonstrates the important role for CCR2 in early islet allograft rejection and highlights the tissue specificity of the chemokine/chemokine receptor system in vivo in regulating allograft rejection.  相似文献   

17.
Acute allograft rejection is a major complication postlung transplantation and is the main risk factor for the development of bronchiolitis obliterans syndrome. Acute rejection is characterized by intragraft infiltration of activated mononuclear cells. The ELR-negative CXC chemokines CXCL9, CXCL10, and CXCL11) are potent chemoattractants for mononuclear cells and act through their shared receptor, CXCR3. Elevated levels of these chemokines in bronchoalveolar lavage fluid have been associated with human acute lung allograft rejection. This led to the hypothesis that the expression of these chemokines during an allogeneic response promotes the recruitment of mononuclear cells, leading to acute lung allograft rejection. We performed studies in a rat orthotopic lung transplantation model of acute rejection, and demonstrated increased expression of CXCL9 and CXCL10 paralleling the recruitment of mononuclear cells and cells expressing CXCR3 to the allograft. However, CXCL9 levels were 15-fold greater than CXCL10 during maximal rejection. Inhibition of CXCL9 decreased intragraft recruitment of mononuclear cells and cellular expression of CXCR3, resulting in lower acute lung allograft rejection scores. Furthermore, the combination of low dose cyclosporin A with anti-CXCL9 therapy had more profound effects on intragraft leukocyte infiltration and in reducing acute allograft rejection scores. This supports the notion that CXCL9 interaction with cells expressing CXCR3 has an important role in the recruitment of mononuclear cells, a pivotal event in the pathogenesis of acute lung allograft rejection.  相似文献   

18.
Type 1 diabetes (T1D) is due to antigen-specific assaults on the insulin producing pancreatic β-cells by diabetogenic T-helper (Th)1 cells. (C-X-C motif) ligand (CXCL)10, an interferon-γ inducible Th1 chemokine, and its receptor, (C-X-C motif) receptor (CXCR)3, have an important role in different autoimmune diseases. High circulating CXCL10 levels were detected in new onset T1D patients, in association with a Th1 autoimmune response. Furthermore β-cells produce CXCL10, under the influence of Th1 cytokines, that suppresses their proliferation. Viral β-cells infections induce cytokines and CXCL10 expression, inducing insulin-producing cell failure in T1D. CXCL10/CXCR3 system plays a critical role in the autoimmune process and in β-cells destruction in T1D. Blocking CXCL10 in new onset diabetes seems a possible approach for T1D treatment.  相似文献   

19.
Th1 and Th2 effector CD4+ T cells orchestrate distinct counterregulatory biological responses. To deliver effective tissue Th1- and Th2-type responses, Th1 and Th2 cell recruitment into tissue must be differentially regulated. We show that tissue-derived STAT1 controls the trafficking of adoptively transferred, Ag-specific, wild-type Th1 cells into the lung. Trafficking of Th1 and Th2 cells is differentially regulated as STAT6, which regulates Th2 cell trafficking, had no effect on the trafficking of Th1 cells and STAT1 deficiency did not alter Th2 cell trafficking. We demonstrate that STAT1 control of Th1 cell trafficking is not mediated through T-bet. STAT1 controls the recruitment of Th1 cells through the induction of CXCL9, CXCL10, CXCL11, and CXCL16, whose expression levels in the lung were markedly decreased in STAT1-/- mice. CXCL10 replacement partially restored Th1 cell trafficking in STAT1-deficient mice in vivo, and deficiency in CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, impaired the trafficking of adoptively transferred Th1 cells in wild-type mice. Our work identifies that STAT1 in peripheral tissue regulates the homing of Ag-specific Th1 cells through the induction of a distinct subset of chemokines and establishes that Th1 and Th2 cell trafficking is differentially controlled in vivo by STAT1 and STAT6, respectively.  相似文献   

20.
Immunosuppressive agents are commonly used in the prevention of graft rejection following transplantation and in the treatment of autoimmunity. In this study, we examined the immunosuppressive mechanism of the drug 15-deoxyspergualin (DSG), which has shown efficacy in the enhancement of graft survival and in the treatment of autoimmunity. Using a murine model of chronic relapsing and remitting experimental autoimmune encephalomyelitis, we were able to demonstrate that DSG both delayed and reduced the severity of experimental autoimmune encephalomyelitis. Subsequent in vitro studies to examine the mechanism of immune suppression showed that DSG was not able to inhibit early activation of naive CD4 T cells, but DSG did effectively inhibit the growth of naive CD4 T cells after activation. An analysis of cell proliferation and cell cycle showed that DSG treatment led to a block in cell cycle progression 2-3 days following Ag stimulation. In addition, DSG treatment inhibited the production of IFN-gamma by Th1 effector T cells. These studies suggest that CD4 T cells are a predominant target for DSG and the immunosuppressive effects of the drug may result from reduced CD4 T cell expansion and decreased polarization into IFN-gamma-secreting Th1 effector T cells in the induction of certain autoimmune disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号