首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors (TRAIL-R1 and TRAIL-R2) are promising targets for tumor therapy. However, their clinical use is limited because some tumors show resistance to TRAIL-treatment. Here, we analyzed epitopes of nine TRAIL-R1-specific human monoclonal antibodies and demonstrated at least five tentative epitopes on human TRAIL-R1. We found that some of the five were post-translationally modified on some tumor cell lines. Interestingly, one of them, an epitope of TR1-272 antibody (TR1-272-epitope) disappeared on the tumor cells that are more susceptible to TRAIL-induced apoptosis compared to TR1-272-epitope positive cells. Treatment of TR1-272-epitope negative cells with TRAIL induced large cluster formation of TRAIL-R1, while treatment of TR1-272-epiope positive cells with TRAIL did not. These results suggest that TR1-272-antibody might distinguish the TRAIL-R1 conformation that could deliver stronger death signals. Further analysis of epitope-appearance and sensitivity to TRAIL should clarify the mechanisms of TRAIL-induced apoptosis of tumor cells and would provide useful information about tumor therapy using TRAIL and TRAIL-R signaling.  相似文献   

2.
Increased activation of the epidermal growth factor receptor (EGFR) is frequently observed in tumors, and inhibition of the signaling pathways originated in the EGFR normally renders tumor cells more sensitive to apoptotic stimuli. However, we show that inhibition of EGFR signaling in non-transformed breast epithelial cells by EGF deprivation or gefitinib, an inhibitor of EGFR tyrosine kinase, causes the upregulation of the long isoform of caspase-8 inhibitor FLICE-inhibitory protein (FLIPL) and makes these cells more resistant to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We demonstrate that the extracellular signal-regulated kinase (ERK)1/2 pathway plays a pivotal role in the regulation of FLIPL levels and sensitivity to TRAIL-induced apoptosis by EGF. Upregulation of FLIPL upon EGF deprivation correlates with a decrease in c-Myc levels and c-Myc knockdown by siRNA induces FLIPL expression. FLIPL upregulation and resistance to TRAIL in EGF-deprived cells are reversed following activation of an estrogen activatable form of c-Myc (c-Myc-ER). Finally, constitutive activation of the ERK1/2 pathway in HER2/ERBB2-transformed cells prevents EGF deprivation-induced FLIPL upregulation and TRAIL resistance. Collectively, our results suggest that a regulated ERK1/2 pathway is crucial to control FLIPL levels and sensitivity to TRAIL in non-transformed cells, and this mechanism may explain the increased sensitivity of tumor cells to TRAIL, in which the ERK1/2 pathway is frequently deregulated.  相似文献   

3.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane cytokine molecule of TNF family and a potent inducer of apoptosis. The anticancer activities of TNF family members are often modulated by interferon (IFN)-gamma. Thus, we investigated whether IFN-gamma enhances TRAIL-induced apoptosis. We exposed HeLa cells to IFN-gamma for 12 h and then treated with recombinant TRAIL protein. No apoptosis was induced in cells pretreated with IFN-gamma, and TRAIL induced 25% cell death after 3 h treatment. In HeLa cells pretreated with IFN-gamma, TRAIL induced cell death to more than 70% at 3 h, indicating that IFN-gamma pretreatment sensitized HeLa cells to TRAIL-induced apoptosis. We investigated molecules that might be regulated by IFN-gamma pretreatment that would affect TRAIL-induced apoptosis. Western blotting analyses demonstrated that TRAIL treatment increased the level of IAP-2 protein and IFN-gamma pretreatment inhibited the upregulation of IAP-2 protein by TRAIL protein. Our data indicate that TRAIL can signal to activate both apoptosis induction and antiapoptotic mechanism, at least, through IAP-2 simultaneously. IFN-gamma or TRAIL treatment alone did not change expression of other pro- or antiapoptotic proteins such as DR4, DR5, FADD, Bax, IAP-1, XIAP, Bcl-2, and Bcl-XL. Our findings suggest that IFN-gamma may sensitize HeLa cells to TRAIL-induced apoptosis by preventing TRAIL-induced IAP-2 upregulation, and IFN-gamma may play a role in anticancer therapy of TRAIL protein through such mechanism.  相似文献   

4.
肿瘤坏死因子相关凋亡诱导配体(TRAIL)可激活胱天蛋白酶(caspase)家族蛋白系列级联反应,最终诱导细胞凋亡. TRAIL选择性地诱导肿瘤细胞凋亡而不损伤正常细胞,使其成为治疗癌症的潜在药物靶点. 目前已知,细胞型FADD样白介素-1-β转换酶抑制蛋白(c FLIP)和凋亡抑制蛋白(IAPs)是肿瘤细胞对TRAIL耐受的主要原因.胱天蛋白酶原-8(procaspase-8)是TRAIL凋亡信号途径中的凋亡起始蛋白. 然而近年发现,在某些肿瘤细胞中procaspase-8功能失调常会阻碍凋亡信号传导,使肿瘤细胞对TRAIL诱导的凋亡产生耐受. 本文就其机制进行概述.  相似文献   

5.
6.
TRAIL has been suggested to induce the cell death in various tumor cells but not in normal cells; however, several studies have provided the evidence that TRAIL can induce the cell death in some normal cells including human normal hepatocytes, suggesting that TRAIL may show hepatic toxicity in human. In this study, we designed a pro-form of TRAIL (sTRAIL:IL-18) in that soluble TRAIL (sTRAIL) is fused to IL-18, and a matrix metalloproteinases (MMPs) cleavage site is introduced at the connecting site. We showed that sTRAIL:IL-18 has significantly diminished the killing activity in HeLa cells but regains the activity by releasing the free sTRAIL through MMP-2-mediated cleavage. In addition, the killing activity of sTRAIL:IL-18 was significantly increased in HeLa cells when active MMP-2 was produced by TNF-alpha. Taken together, the data suggested that the sTRAIL:IL-18 can be reactivated at the specialized areas where MMPs are pathologically produced.  相似文献   

7.
Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects.  相似文献   

8.
We report here the cleavage of the c-Jun N-terminal Kinase (JNK) pathway scaffold protein, JNK Interacting Protein-1 (JIP1), by caspases during both Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) and staurosporine-induced apoptosis in HeLa cells. During the initiation of apoptosis, maximal JNK activation is observed when JIP1 is intact, whereas cleavage of JIP1 correlates with JNK inactivation and progression of apoptosis. JIP1 is cleaved by caspase-3 at two sites, leading to disassembly of the JIP1/JNK complex. Inhibition of JIP1 cleavage by the caspase-3 inhibitor DEVD.fmk inhibits this disassembly, and is accompanied by sustained JNK activation. These data suggest that TRAIL and staurosporine induce JNK activation in a caspase-3-independent manner and that caspase-3-mediated JIP1 cleavage plays a role in JNK inactivation via scaffold disassembly during the execution phase of apoptosis. Caspase-mediated cleavage of JIP scaffold proteins may therefore represent an important mechanism for modulation of JNK signalling during apoptotic cell death.  相似文献   

9.
Hypoxia is a common environmental stress. Particularly, the center of rapidly growing solid tumors is easily exposed to hypoxic conditions. Thus, tumor cell response to hypoxia plays an important role in tumor progression as well as tumor therapy. However, little is known about hypoxic effect on apoptotic cell death. To examine the effects of hypoxia on TRAIL-induced apoptosis, human lung carcinoma A549 cells were exposed to hypoxia and treated with TRAIL protein. Hypoxia significantly protected A549 cells from apoptosis induced by TRAIL. Western blotting analysis demonstrated that hypoxia increased expression of antiapoptotic proteins such as Bcl-2, Bcl-XL, and IAP family members. The increase of these antiapoptotic molecules is believed to play an hypoxia-mediated protective role in TRAIL-induced apoptosis. Our findings suggest that an increase of antiapoptotic proteins induced by hypoxia may regulate the therapeutic activity of TRAIL protein in cancer therapy.  相似文献   

10.
Defects in apoptosis are observed in many cancer cell types and contribute in a relevant way to tumorigenesis. Apoptosis is a complex and well‐regulated cell death program that plays a key role in the control of cell homeostasis, particularly at the level of the hematopoietic system. Apoptosis can be initiated through two different mechanisms involving either activation of the death receptors (extrinsic pathway) or activation of a mitochondrial apoptotic process (intrinsic pathway). Among the various death receptors a peculiar role is played by TNF‐related apoptosis‐inducing ligand (TRAIL)‐receptors (TRAIL‐Rs) and their ligand TRAIL. TRAIL recently received considerable interest for its potent anti‐tumor killing activity, sparing normal cells. Here, we will review the expression and the abnormalities of TRAIL/TRAIL‐R system in hematologic malignancies. The large majority of primary hematologic tumors are resistant to TRAIL‐mediated apoptosis, basically due to the activation of anti‐apoptotic signaling pathway (such as NF‐κB), overexpression of anti‐apoptotic proteins (such as FLIP, Bcl‐2, XIAP) or expression of TRAIL decoy receptors or reduced TRAIL‐R1/‐R2 expression. Strategies have been developed to bypass this TRAIL resistance and are based on the combination of TRAIL with chemotherapy or radiotherapy, or with proteasome or histone deacetylase or NF‐κB inhibitors. The agents used in combination with TRAIL either enhance TRAIL‐R1/‐R2 expression or decrease expression of anti‐apoptotic proteins (c‐FLIP, XIAP, Bcl‐2). Many of these combinatorial therapies hold promise for future developments in treatment of hematologic malignancies. J. Cell. Biochem. 110: 21–34, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
12.
We established TRAIL-resistant MDA-231/TR cells from MDA-231 parent cells to understand the mechanism of TRAIL resistance in breast cancer cells. The selected TRAIL-resistant cells were cross-resistant to TNF-alpha/cycloheximide but remained sensitive to DNA-damage drugs such as oxaliplatin and etoposide. The expression levels of death receptors (DR4 and DR5), FADD, cIAP1, cIAP2, and Bcl-2 family were not changed in TRAIL-treated both cells. Significant down-regulation of XIAP and cFLIP was occurred after TRAIL treatment in MDA-231 cells whereas their levels were sustained in MDA-231/TR cells. TRAIL-mediated activation of ERK and JNK were also observed in parent MDA-231 cells but not in MDA-231/TR cells. However, TRAIL-resistant cells showed constitutive activation state after treatment with TRAIL. Pretreatment with PD98059 or transfection of MKK1-DN (dominant negative) expression vector attenuated TRAIL resistance in MDA-231/TR cells. Our findings provide the evidence that the sustained expression level of cFLIP(L) and XIAP protein and constitutive ERK activation may lead to acquired TRAIL resistance in breast cancer cells.  相似文献   

13.
Our study aimed to compare death signalling pathways triggered by lupulone in TRAIL-sensitive human colon cancer cells (SW480) and in their derived TRAIL-resistant metastatic cells (SW620). Lupulone (40 μg/ml) up-regulated expression of TRAIL DR4/DR5 death receptors at the cell surface of both cell lines, even in the absence of exogenous TRAIL ligand. Cell death induced by lupulone was inhibited in SW480 and SW620 cells exposed to blocking anti-DR4/DR5 antibodies. In SW480 cells, lupulone triggered cell death through a cross-talk between TRAIL-DR4/DR5 and the mitochondrial (intrinsic) pathways involving caspase-8 activation and Bid protein cleavage. As a consequence mitochondrial cytochrome c was released into the cytosol and activation of caspases-9 and -3 was observed. In the metastatic SW620 cells, lupulone restored the sensibility of these cells to TRAIL ligand and activated the extrinsic apoptotic pathway via DR4/DR5 death receptors and the involvement of the caspase-8/caspase-3 cascade. The demonstration that lupulone is able to activate TRAIL-death signalling pathways even in TRAIL resistant cancer cells highlights the potential of this natural compound for cancer prevention and therapy.  相似文献   

14.
多囊卵巢综合征模型鼠颗粒细胞凋亡及TRAIL蛋白的表达   总被引:2,自引:0,他引:2  
目的通过观察卵巢颗粒细胞凋亡及TRAIL(肿瘤坏死因子相关凋亡诱导配体)蛋白的表达情况,探讨颗粒细胞凋亡与PCOS发病的相关性及凋亡调控蛋白TRAIL在PCOS颗粒细胞凋亡中的作用。方法采用硫酸普拉睾酮钠诱导大鼠PCOS模型,3’-末端原位标记法(TUNEL)检测大鼠卵巢颗粒细胞凋亡情况,免疫组化染色及RT-PCR分析检测TRAIL蛋白及TRAIL mRNA在颗粒细胞的表达。结果PCOS组大鼠卵巢窦状卵泡颗粒细胞凋亡发生率及TRAIL蛋白的表达较对照组明显增强(P<0.01,P<0.05),窦前卵泡颗粒细胞凋亡发生率及TRAIL蛋白的表达两组无显著性差异(P>0.05),两组卵巢始基卵泡颗粒细胞未发现凋亡征象及TRAIL蛋白表达。PCOS组大鼠卵巢颗粒细胞TRAIL mRNA的表达较对照组明显增强(P<0.01)。结论PCOS大鼠卵巢窦状卵泡颗粒细胞凋亡明显增强,TRAIL在PCOS大鼠卵巢颗粒细胞凋亡调控中发挥了作用。  相似文献   

15.
16.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family and a potent inducer of apoptosis. TRAIL has been shown to effectively limit tumor growth in vivo without detectable cytotoxic side-effects. Interferon (IFN)-gamma often modulates the anticancer activities of TNF family members including TRAIL. However, little is known about the mechanism. To explore the mechanism, A549, HeLa, LNCaP, Hep3B and HepG2 cells were pretreated with IFN-gamma, and then exposed to TRAIL. IFN-gamma pretreatment augmented TRAIL-induced apoptosis in all these cell lines. A549 cells were selected and further characterized for IFN-gamma action in TRAIL-induced apoptosis. Western blotting analyses revealed that IFN-gamma dramatically increased the protein levels of interferon regulatory factor (IRF)-1, but not TRAIL receptors (DR4 and DR5) and pro-apoptotic (FADD and Bax) and anti-apoptotic factors (Bcl-2, Bcl-XL, cIAP-1, cIAP-2 and XIAP). To elucidate the functional role of IRF-1 in IFN-gamma-enhanced TRAIL-induced apoptosis, IRF-1 was first overexpressed by using an adenoviral vector AdIRF-1. IRF-1 overexpression minimally increased apoptotic cell death, but significantly enhanced apoptotic cell death induced by TRAIL when infected cells were treated with TRAIL. In further experiments using an antisense oligonucleotide, a specific repression of IRF-1 expression abolished enhancer activity of IFN-gamma for TRAIL-induced apoptosis. Therefore, our data indicate that IFN-gamma enhances TRAIL-induced apoptosis through IRF-1.  相似文献   

17.
We have recently demonstrated that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) increases endothelial nitric oxide synthase (eNOS) phosphorylation, NOS activity, and nitric oxide (NO) synthesis in cultured human umbilical vein endothelial cells (HUVEC), without inducing apoptotic cell death. Although an important factor that regulates eNOS activity is its localization within the cells, little is known about the role of TRAIL in the regulation of eNOS trafficking among cellular compartments and the cytoskeleton involvement in this machinery. Then, we did both quantitative and semi-quantitative evaluations with biochemical assays and immune fluorescence microscopy in the presence of specific inhibitors of NOS activity as well as of cytoskeletal microtubule structures. In our cellular model, TRAIL treatment not only increased NO levels but also caused a time-dependent NO migration of fluorescent spots from the plasma membrane to the inner part of the cells. In unstimulated cells, most of the eNOS was localized at the cell membranes. However, within 10 min following addition of TRAIL, nearly all the cells showed an increased cytoplasm localization of eNOS which appeared co-localized with the Golgi apparatus at a higher extent than in unstimulated cells. These effects were associated to an increased formation of trans-cytoplasm stress fibers with no significant changes of the microtubule network. Conversely, microtubule disruption and Golgi scattering induced with Nocodazole treatment inhibited TRAIL-increased NOS activity, indicating that, on cultured HUVEC, TRAIL ability to affect NO production by regulating eNOS sub-cellular distribution is mediated by cytoskeleton and Golgi complex modifications.  相似文献   

18.
The prostate‐apoptosis‐response‐gene‐4 (Par‐4) is up‐regulated in prostate cells undergoing programmed cell death. Furthermore, Par‐4 protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor‐mediated cell death pathways. In this study, we investigated how Par‐4 modulates TRAIL‐mediated apoptosis in TRAIL‐resistant Caki cells. Par‐4 overexpressing cells were strikingly sensitive to apoptosis induced by TRAIL compared with control cells. Par‐4 overexpressing Caki cells treated with TRAIL showed an increased activation of the initiator caspase‐8 and the effector caspase‐3, together with an enforced cleavage of XIAP and c‐FLIP. TRAIL‐induced reduction of XIAP and c‐FLIP protein levels in Par‐4 overexpressing cells was prevented by z‐VAD pretreatment. In addition, the surface DR5 protein level was increased in TRAIL‐treated Par‐4 overexpressing cells. Interestingly, even though a deletion of leucine zipper domain in Par‐4 recovered Bcl‐2 level to basal level induced by wild type Par‐4, it partly decreased sensitivity to TRAIL in Caki cells. In addition, exposure of Caki/Par‐4 cells to TRAIL led to reduction of phosphorylated Akt levels, but deletion of leucine zipper domain of Par‐4 did not affect these phosphorylated Akt levels. In conclusion, we here provide evidence that ectopic expression of Par‐4 sensitizes Caki cells to TRAIL via modulation of multiple targets, including DR5, Bcl‐2, Akt, and NF‐κB. J. Cell. Biochem. 109: 885–895, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Tumor necrosis factor-related apoptosis induced ligand (TRAIL) is an important apoptosis inducer in a variety of tumor cells. In the present study, we determined the underlying molecular mechanisms by which certain gastric cancer cells are resistant to TRAIL. We first detected expression of programmed cell death 4 (PDCD4) in three gastric cancer cell lines and identified its association with the sensitivity of gastric cancer cells to TRAIL. We then stably transfected PDCD4 cDNA or shRNA into these gastric cell lines. Our data showed that restoration of PDCD4 expression induced TRAIL sensitivity, whereas knockdown of PDCD4 expression reduced the sensitivity of these tumor cells to TRAIL treatment. PDCD4 was able to suppress expression of FLICE-inhibiting protein (FLIP), a negative regulator of apoptosis. Knockdown of FLIP expression using FLIP shRNA had similar effects as those of restored PDCD4 expression. Furthermore, the proteasome inhibitor MG132 was able to inhibit expression of FLIP mRNA and protein and upregulate the sensitivity of these cells to TRAIL treatment. Taken together, the results from the current study demonstrated that PDCD4 plays an important role in mediating the sensitivity of gastric cancer cells to TRAIL-induced apoptosis through FLIP suppression. Therefore, the proteasome inhibitor MG132 should be further evaluated for combination therapy with TRAIL.  相似文献   

20.
In response to a diverse array of signals, IkappaBalpha is targeted for phosphorylation-dependent degradation by the proteasome, thereby activating NF-kappaB. Here we demonstrate a role of the cleavage product of IkappaBalpha in various death signals. During apoptosis of NIH3T3, Jurkat, Rat-1, and L929 cells exposed to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), Fas, serum deprivation, or TNF-alpha, respectively, IkappaBalpha was cleaved in a caspase-dependent manner. In vitro and in vivo cleavage assays and site-directed mutagenesis showed that caspase-3 cleaved IkappaBalpha between Asp31 and Ser32. Expression of the cleavage product lacking amino-terminus (1-31), DeltaIkappaBalpha, sensitized otherwise resistant NIH3T3 fibroblast cells to apoptosis induced by TNF-alpha or TRAIL, and HeLa tumor cells to TNF-alpha. DeltaIkappaBalpha was more pro-apoptotic compared to wild type or cleavage-resistant (D31E)IkappaBalpha mutant and the sensitization elicited by DeltaIkappaBalpha was as effective as that by the dominant negative mutant, (S32,36A)IkappaBalpha, in NIH3T3 cells. DeltaIkappaBalpha suppressed the transactivation of NF-kappaB induced by TNF-alpha or TRAIL, as reflected by luciferase-reporter activity. Conversely, expression of the p65 subunit of NF-kappaB suppressed TNF-alpha-, TRAIL-, and serum deprivation-induced cell death. On the contrary, DeltaIkappaBalpha was less effective at increasing the death rate of HeLa cells that were already sensitive to death signals including TRAIL, etoposide, or taxol. These results suggest that DeltaIkappaBalpha generated by various death signals sensitizes cells to apoptosis by suppressing NF-kappaB activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号