首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sarcomere assembly in striated muscles has long been described as a series of steps leading to assembly of individual proteins into thick filaments, thin filaments and Z-lines. Decades of previous work focused on the order in which various structural proteins adopted the striated organization typical of mature myofibrils. These studies led to the view that actin and α-actinin assemble into premyofibril structures separately from myosin filaments, and that these structures are then assembled into myofibrils with centered myosin filaments and actin filaments anchored at the Z-lines. More recent studies have shown that particular scaffolding proteins and chaperone proteins are required for individual steps in assembly. Here, we review the evidence that N-RAP, a LIM domain and nebulin repeat protein, scaffolds assembly of actin and α-actinin into I-Z-I structures in the first steps of assembly; that the heat shock chaperone proteins Hsp90 & Hsc70 cooperate with UNC-45 to direct the folding of muscle myosin and its assembly into thick filaments; and that the kelch repeat protein Krp1 promotes lateral fusion of premyofibril structures to form mature striated myofibrils. The evidence shows that myofibril assembly is a complex process that requires the action of particular catalysts and scaffolds at individual steps. The scaffolds and chaperones required for assembly are potential regulators of myofibrillogenesis, and abnormal function of these proteins caused by mutation or pathological processes could in principle contribute to diseases of cardiac and skeletal muscles.  相似文献   

2.
3.
Giardia spp. trophozoites isolated from rat small intestine were examined by light microscopy, electron microscopy, SDS-gel electrophoresis, and immunocytochemistry. In SDS-gels of protein extracts of isolated Giardia spp. trophozoites protein bands corresponding to myosin, α-actinin, and actin were identified by comigration with avian myofibril proteins and molecular weight standards. Actin was specifically identified in SDS-gels by immunoautoradiography. Immunostaining for actin, α-actinin, myosin, and tropomyosin in trophozoites was demonstrated in the periphery of the ventral disc in an area corresponding to the lateral crest. Electron-dense fibrillar was observed in the lateral crest of the ventral disc by electron microscopy. Immunostaining for actin and α-actinin was also observed in the area of the median body, a microtubular organelle, and in electron-dense fibrillar material associated with the intracellular axonemes of the posterior-lateral flagella. The localization of these contractile proteins in the ventral disc suggests that they may play an important role in the mechanism of trophozoite attachment.  相似文献   

4.
Krp1, also called sarcosin, is a cardiac and skeletal muscle kelch repeat protein hypothesized to promote the assembly of myofibrils, the contractile organelles of striated muscles, through interaction with N-RAP and actin. To elucidate its role, endogenous Krp1 was studied in primary embryonic mouse cardiomyocytes. While immunofluorescence showed punctate Krp1 distribution throughout the cell, detergent extraction revealed a significant pool of Krp1 associated with cytoskeletal elements. Reduction of Krp1 expression with siRNA resulted in specific inhibition of myofibril accumulation with no effect on cell spreading. Immunostaining analysis and electron microscopy revealed that cardiomyocytes lacking Krp1 contained sarcomeric proteins with longitudinal periodicities similar to mature myofibrils, but fibrils remained thin and separated. These thin myofibrils were degraded by a scission mechanism distinct from the myofibril disassembly pathway observed during cell division in the developing heart. The data are consistent with a model in which Krp1 promotes lateral fusion of adjacent thin fibrils into mature, wide myofibrils and contribute insight into mechanisms of myofibrillogenesis and disassembly.  相似文献   

5.
6.
The lamellar membrane at the leading edge of motile cells participates in a series of complex movements that involve the assembly and reorganization of actin bundles and networks, both structures formed by actin crosslinking proteins. Immunofluorescence miscroscopy localizes within lamellipodia and filopodia several crosslinking proteins including fascin, fimbrin, α-actinin and filamin. While these proteins may organize actin into bundles and networks, fimbrin and α-actinin may play an additional role of linking the cytoskeleton to cell-substratum adhesion sites.  相似文献   

7.
Linkage analysis identifies 10q24-26 as a disease locus for dilated cardiomyopathy (DCM), a region including the N-RAP gene. N-RAP is a nebulin-like LIM protein that may mediate force transmission and myofibril assembly in cardiomyocytes. We describe the sequence, genomic structure, and expression of human N-RAP, as well as an initial screen to determine whether N-RAP mutations cause cardiomyopathy. Human expressed sequence tag databases were searched with the published 3,528-bp mouse N-RAP open reading frame (ORF). Putative cDNA sequences were interrogated by direct sequencing from cardiac and skeletal muscle RNA. We identified two human N-RAP isoforms with ORFs of 5,085 bp (isoform C) and 5,190 bp (isoform S), encoding products of 193-197 kDa. Genomic database searches localize N-RAP to human chromosome 10q25.3 and match isoforms C and S to 41 and 42 exons. Only isoform C is detected in human cardiac RNA; in skeletal muscle, approximately 10% is isoform C and approximately 90% is isoform S. We investigated apparent differences between human N-RAP cDNA and mouse sequences. Two mouse N-RAP isoforms with ORFs of 5,079 and 5,184 bp were identified with approximately 85% similarity to human isoforms; published mouse sequences include cloning artifacts truncating the ORF. Murine and human isoforms have similar gene structure, tissue specificity, and size. N-RAP is especially conserved within its nebulin-like and LIM domains. We expressed both N-RAP isoforms and the previously described truncated N-RAP in embryonic chick cardiomyocytes. All constructs targeted to myofibril precursors and the cell periphery, and inhibited myofibril assembly. Several human N-RAP polymorphisms were detected, but none were unique to cardiomyopathy patients. N-RAP is highly conserved and exclusively expressed in cardiac and skeletal muscle. Genetic abnormalities remain excellent candidate causes for cardiac and skeletal myopathies.  相似文献   

8.
The actin cross-linking protein, α-actinin, plays a crucial role in mediating furrow ingression during cytokinesis. However, the mechanism by which its dynamics are regulated during this process is poorly understood. Here we have investigated the role of calcium sensitivity of α-actinin in the regulation of its dynamics by generating a functional calcium-insensitive mutant (EFM). GFP-tagged EFM (EFM-GFP) localized to the equatorial regions during cell division. However, the maximal equatorial accumulation of EFM-GFP was significantly smaller in comparison to α-actinin-GFP when it was expressed in normal cells and cells depleted of endogenous α-actinin. No apparent defects in cytokinesis were observed in these cells. However, F-actin levels at the equator were significantly reduced in cells expressing EFM-GFP as compared with α-actinin-GFP at furrow initiation but were recovered during furrow ingression. These results suggest that calcium sensitivity of α-actinin is required for its equatorial accumulation that is crucial for the initial equatorial actin assembly but is dispensable for cytokinesis. Equatorial RhoA localization was not affected by EFM-GFP overexpression, suggesting that equatorial actin assembly is predominantly driven by the RhoA-dependent mechanism. Our observations shed new light on the role and regulation of the accumulation of pre-existing actin filaments in equatorial actin assembly during cytokinesis.  相似文献   

9.
In an effort to understand the conditions that promote the assembly of myofibrillar proteins in muscle cells, the temporal sequence of accumulation of four myofibrillar proteins, actin, myosin, tropomyosin, and α-actinin, was monitored during the period of de novo assembly of myofibrils in differentiating muscle cells. Isotope dilution experiments indicated that all four proteins were accumulated simultaneously. Therefore, assembly of myofibrils may be occurring in the presence of a full complement of myofibrillar proteins.  相似文献   

10.
Antibodies specific for the skeletal muscle structural protein α-actinin are used to localize this protein by indirect immunofluorescence in nonmuscle cells. In cultured nonmuscle cells, α-actinin is localized along or between actin filament bundles producing an almost regular periodicity. The protein is also detected in the form of fluorescent plaques at some ends of actin filament bundles, as well as in a filamentous form in some overlap areas of cells. In spreading rat embryo cells, α-actinin assumes a focal distribution which corresponds to the vertices of a highly regular actin filament network. The results suggest that α-actinin may be involved in the organization of actin filament bundles, in the attachment of actin filaments to the plasma membrane, and in the assembly of actin filaments in areas of cell to cell contact.  相似文献   

11.
G Luo  A H Herrera  R Horowits 《Biochemistry》1999,38(19):6135-6143
N-RAP is a recently discovered muscle-specific protein that is concentrated at the myotendon junctions in skeletal muscle and at the intercalated disks in cardiac muscle. The C-terminal half of N-RAP contains a region with sequence homology to nebulin, while a LIM domain is found at its N-terminus. N-RAP is hypothesized to perform an anchoring function, linking the terminal actin filaments of myofibrils to protein complexes located beneath the sarcolemma. We used a solid-phase assay to screen myofibrillar and junctional proteins for binding to several recombinant fragments of N-RAP, including the nebulin-like super repeat region (N-RAP-SR), the N-terminal half including the LIM domain (N-RAP-NH), and the region of N-RAP between the super repeat region and the LIM domain (N-RAP-IB). Actin is the only myofibrillar protein tested that exhibits specific binding to N-RAP, with high-affinity binding to N-RAP super repeats, and 10-fold weaker binding to N-RAP-IB. In contrast, myosin, isolated myosin heads, tropomyosin, and troponin exhibited no specific interaction with N-RAP domains. A recombinant fragment corresponding to the C-terminal one-fourth of vinculin also binds specifically to N-RAP super repeats, while no specific N-RAP binding activity was observed for other regions of the vinculin molecule. Finally, talin binds with high affinity to the LIM domain of N-RAP. These results support our hypothesis that N-RAP is part of a complex of proteins that anchors the terminal actin filaments of the myofibril to the membrane, and functions in transmitting tension from the myofibrils to the extracellular matrix.  相似文献   

12.
Tropomodulin1 (Tmod1) caps thin filament pointed ends in striated muscle, where it controls filament lengths by regulating actin dynamics. Here, we investigated myofibril assembly and heart development in a Tmod1 knockout mouse. In the absence of Tmod1, embryonic development appeared normal up to embryonic day (E) 8.5. By E9.5, heart defects were evident, including aborted development of the myocardium and inability to pump, leading to embryonic lethality by E10.5. Confocal microscopy of hearts of E8-8.5 Tmod1 null embryos revealed structures resembling nascent myofibrils with continuous F-actin staining and periodic dots of alpha-actinin, indicating that I-Z-I complexes assembled in the absence of Tmod1. Myomesin, a thick filament component, was also assembled normally along these structures, indicating that thick filament assembly is independent of Tmod1. However, myofibrils did not become striated, and gaps in F-actin staining (H zones) were never observed. We conclude that Tmod1 is required for regulation of actin filament lengths and myofibril maturation; this is critical for heart morphogenesis during embryonic development.  相似文献   

13.
α-Actinin is a prominent actin filament associated protein for which different isoforms exist. Here, we have examined whether the two highly homologous non-muscle α-actinin isoforms 1 and 4 exhibit functional differences in astrocytoma cells. The protein levels of these isoforms were differentially regulated during the development and progression of astrocytomas, as α-actinin 1 was higher in astrocytomas compared to normal brains whereas α-actinin 4 was elevated in high-grade astrocytomas compared to normal brains and low grade astrocytomas. RNAi demonstrated contrasted contributions of α-actinin 1 and 4 to the malignant behavior of U-373, U-87 and A172 astrocytoma cells. While α-actinin 1 appeared to favor the expansion of U-373, U-87 and A172 astrocytoma cell populations, α-actinin 4 played this role only for U-373 cells. On the other hand, downregulation of α-actinin 4, but not 1, reduced cell motility, adhesion, cortical actin, and RhoA levels. Finally, in the three astrocytoma cell lines examined, α-actinin 1 and 4 had contrasted biochemical properties as α-actinin 4 was significantly more abundant in the actin cytoskeleton than α-actinin 1. Collectively, these findings suggest that α-actinin 1 and 4 are differentially regulated during the development and progression of astrocytomas because each of these isoforms uniquely contributes to distinct malignant properties of astrocytoma cells.  相似文献   

14.
The mutual effect of three actin-binding proteins (α-actinin, calponin and filamin) on the binding to actin was analyzed by means of differential centrifugation and electron microscopy. In the absence of actin α-actinin, calponin and filamin do not interact with each other. Calponin and filamin do not interfere with each other in the binding to actin bundles. Slight interference was observed in the binding of α-actinin and calponin to actin bundles. Higher ability of calponin to depress α-actinin binding can be due to the higher stoichiometry calponin/actin in the complexes formed. The largest interference was observed in the pair filamin–α-actinin. These proteins interfere with each other in the binding to the bundled actin filaments; however, neither of them completely displaced another protein from its complexes with actin. The structure of actin bundles formed in the presence of any one actin-binding protein was different from that observed in the presence of binary mixtures of two actin-binding proteins. In the case of calponin or its binary mixtures with α-actinin or filamin the total stoichiometry actin-binding protein/actin was larger than 0.5. This means that α-actinin, calponin and filamin may coexist on actin filaments and more than mol of any actin-binding protein is bound per two actin monomers. This may be important for formation of different elements of cytoskeleton.  相似文献   

15.
The interaction between α-actinin and palladin, two actin-cross-linking proteins, is essential for proper bidirectional targeting of these proteins. As a first step toward understanding the role of this complex in organizing cytoskeletal actin, we have characterized binding interactions between the EF-hand domain of α-actinin (Act-EF34) and peptides derived from palladin and generated an NMR-derived structural model for the Act-EF34/palladin peptide complex. The critical binding site residues are similar to an α-actinin binding motif previously suggested for the complex between Act-EF34 and titin Z-repeats. The structure-based model of the Act-EF34/palladin peptide complex expands our understanding of binding specificity between the scaffold protein α-actinin and various ligands, which appears to require an α-helical motif containing four hydrophobic residues, common to many α-actinin ligands. We also provide evidence that the Family X mutation in palladin, associated with a highly penetrant form of pancreatic cancer, does not interfere with α-actinin binding.  相似文献   

16.
Tropomodulin (Tmod) is an actin pointed-end capping protein that regulates actin dynamics at thin filament pointed ends in striated muscle. Although pointed-end capping by Tmod controls thin filament lengths in assembled myofibrils, its role in length specification during de novo myofibril assembly is not established. We used the Drosophila Tmod homologue, sanpodo (spdo), to investigate Tmod's function during muscle development in the indirect flight muscle. SPDO was associated with the pointed ends of elongating thin filaments throughout myofibril assembly. Transient overexpression of SPDO during myofibril assembly irreversibly arrested elongation of preexisting thin filaments. However, the lengths of thin filaments assembled after SPDO levels had declined were normal. Flies with a preponderance of abnormally short thin filaments were unable to fly. We conclude that: (a) thin filaments elongate from their pointed ends during myofibril assembly; (b) pointed ends are dynamically capped at endogenous levels of SPDO so as to allow elongation; (c) a transient increase in SPDO levels during myofibril assembly converts SPDO from a dynamic to a permanent cap; and (d) developmental regulation of pointed-end capping during myofibril assembly is crucial for specification of final thin filament lengths, myofibril structure, and muscle function.  相似文献   

17.
The Drosophila Alp/Enigma family protein Zasp52 localizes to myotendinous junctions and Z-discs. It is required for terminal muscle differentiation and muscle attachment. Its vertebrate ortholog ZASP/Cypher also localizes to Z-discs, interacts with α-actinin through its PDZ domain, and is involved in Z-disc maintenance. Human mutations in ZASP cause myopathies and cardiomyopathies. Here we show that Drosophila Zasp52 is one of the earliest markers of Z-disc assembly, and we use a Zasp52-GFP fusion to document myofibril assembly by live imaging. We demonstrate that Zasp52 is required for adult Z-disc stability and pupal myofibril assembly. In addition, we show that two closely related proteins, Zasp66 and the newly identified Zasp67, are also required for adult Z-disc stability and are participating with Zasp52 in Z-disc assembly resulting in more severe, synergistic myofibril defects in double mutants. Zasp52 and Zasp66 directly bind to α-actinin, and they can also form a ternary complex. Our results indicate that Alp/Enigma family members cooperate in Z-disc assembly and myofibril formation; and we propose, based on sequence analysis, a novel class of PDZ domain likely involved in α-actinin binding.  相似文献   

18.
Proteolytic activity of proteasome on myofibrillar structures   总被引:5,自引:0,他引:5  
The physiologic function of proteasome remains unclear. Evidence suggests a role in degradation of ubiquitin-protein conjugates, MHC antigen presentation, and some specificity of substrate within certain cell types. To explore further the properties of proteasome we have examined its effect on a well defined structure, the myofibril. We find that despite its large size (20S) proteasome is able to degrade myofibrils and intact, permeabilized muscle fibrils. The proteins degraded showed some specificity because actin, myosin and desmin were degraded faster than -actinin, troponin T and tropomyosin. Changes in ultrastructure were slow and included a general loss of structure with Z and I bands effected before the M band and costameres.  相似文献   

19.
Fibronectin is a principal component of the extracellular matrix. Soluble fibronectin molecules are assembled into the extracellular matrix as insoluble, fibrillar strands via a cell-dependent process. In turn, the interaction of cells with the extracellular matrix form of fibronectin stimulates cell functions critical for tissue repair. Cross-talk between cell-cell and cell-extracellular matrix adhesion complexes is essential for the organization of cells into complex, functional tissue during embryonic development and tissue remodeling. Here, we demonstrate that fibronectin matrix assembly affects the organization, composition, and function of N-cadherin-based adherens junctions. Using fibronectin-null mouse embryonic myofibroblasts, we identified a novel quaternary complex composed of N-cadherin, β-catenin, tensin, and actin that exists in the absence of a fibronectin matrix. In the absence of fibronectin, homophilic N-cadherin ligation recruited both tensin and α5β1 integrins into nascent cell-cell adhesions. Initiation of fibronectin matrix assembly disrupted the association of tensin and actin with N-cadherin, released α5β1 integrins and tensin from cell-cell contacts, stimulated N-cadherin reorganization into thin cellular protrusions, and decreased N-cadherin adhesion. Fibronectin matrix assembly has been shown to recruit α5β1 integrins and tensin into fibrillar adhesions. Taken together, these studies suggest that tensin serves as a common cytoskeletal link for integrin- and cadherin-based adhesions and that the translocation of α5β1 integrins from cell-cell contacts into fibrillar adhesions during fibronectin matrix assembly is a novel mechanism by which cell-cell and cell-matrix adhesions are coordinated.  相似文献   

20.
The role of α-actinin in the attachment of actin to plasma membranes has been investigated. Specific antibody staining of SDS gels has indicated that α-actinin is a major component in isolated plasma membranes prepared from three different cell types by two different procedures. Using specific extraction conditions, most of the α-actinin can be selectively extracted from the membranes with relatively little parallel release of actin. This selective dissociation of α-actinin from the plasma membrane leads us to conclude that α-actinin is present in these membrane preparations, because it is bound to actin, and that α-actinin does not form a direct link between actin and the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号