首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomal proteins must be imported into the nucleus after being synthesized in the cytoplasm. Since the rpS2 amino acid sequence does not contain a typical nuclear localization signal, we used deletion mutant analysis and rpS2-beta-galactosidase chimeric proteins to identify the nuclear targeting domains in rpS2. Nuclear rpS2 is strictly localized in the nucleoplasm and is not targeted to the nucleoli. Subcellular localization analysis of deletion mutants of rpS2-beta-galactosidase chimeras identified a central domain comprising 72 amino acids which is necessary and sufficient to target the chimeric beta-galactosidase to the nucleus. The nuclear targeting domain shares no significant similarity to already characterized nuclear localization signals in ribosomal proteins or other nuclear proteins. Although a Nup153 fragment containing the importinbeta binding site fused to VP22 blocks nuclear import of rpS2-beta-galactosidase fusion proteins, nuclear uptake of rpS2 could be mediated by several import receptors since it binds to importinalpha/beta and transportin.  相似文献   

2.
We have developed a new technique for proximity-dependent labeling of proteins in eukaryotic cells. Named BioID for proximity-dependent biotin identification, this approach is based on fusion of a promiscuous Escherichia coli biotin protein ligase to a targeting protein. BioID features proximity-dependent biotinylation of proteins that are near-neighbors of the fusion protein. Biotinylated proteins may be isolated by affinity capture and identified by mass spectrometry. We apply BioID to lamin-A (LaA), a well-characterized intermediate filament protein that is a constituent of the nuclear lamina, an important structural element of the nuclear envelope (NE). We identify multiple proteins that associate with and/or are proximate to LaA in vivo. The most abundant of these include known interactors of LaA that are localized to the NE, as well as a new NE-associated protein named SLAP75. Our results suggest BioID is a useful and generally applicable method to screen for both interacting and neighboring proteins in their native cellular environment.  相似文献   

3.
The evidence that nuclear proteins can be degraded by cytosolic proteasomes has received considerable experimental support. However, the presence of proteasome subunits in the nucleus also suggests that protein degradation could occur within this organelle. We determined that Sts1 can target proteasomes to the nucleus and facilitate the degradation of a nuclear protein. Specific sts1 mutants showed reduced nuclear proteasomes at the nonpermissive temperature. In contrast, high expression of Sts1 increased the levels of nuclear proteasomes. Sts1 targets proteasomes to the nucleus by interacting with Srp1, a nuclear import factor that binds nuclear localization signals. Deletion of the NLS in Sts1 prevented its interaction with Srp1 and caused proteasome mislocalization. In agreement with this observation, a mutation in Srp1 that weakened its interaction with Sts1 also reduced nuclear targeting of proteasomes. We reported that Sts1 could suppress growth and proteolytic defects of rad23Δ rpn10Δ. We show here that Sts1 suppresses a previously undetected proteasome localization defect in this mutant. Taken together, these findings explain the suppression of rad23Δ rpn10Δ by Sts1 and suggest that the degradation of nuclear substrates requires efficient proteasome localization.  相似文献   

4.
5.
The human immunodeficiency Rev protein shuttles between the nucleus and cytoplasm, while accumulating to high levels in the nucleus. Rev has a nuclear localization signal (NLS; AA 35-50) with an arginine-rich motif (ARM) that interacts with importin beta and a leucine-rich nuclear export signal (NES; AA 75-84) recognized by CRM1/exportin 1. Here we explore nuclear targeting activities of the transport signals of Rev. GFP tagging and quantitative fluorescence microscopy were used to study the localization behavior of Rev NLS/ARM mutants under conditions inhibiting the export of Rev. Rev mutant M5 was actively transported to the nucleus, despite its known failure to bind importin beta. Microinjection of transport substrates with Rev-NES peptides revealed that the Rev-NES has both nuclear import and export activities. Replacement of amino acid residues "PLER" (77-80) of the NES with alanines abolished bidirectional transport activity of the Rev-NES. These results indicate that both transport signals of Rev have nuclear import capabilities and that the Rev NLS has more than one nuclear targeting activity. This suggests that Rev is able to use various routes for nuclear entry rather than depending on a single pathway.  相似文献   

6.
7.
The nuclear lamina is essential for the proper structure and organization of the nucleus. Deregulation of A‐type lamins can compromise genomic stability, alter chromatin organization and cause premature vascular aging. Here, we show that accumulation of the lamin A precursor, prelamin A, inhibits 53BP1 recruitment to sites of DNA damage and increases basal levels of DNA damage in aged vascular smooth muscle cells. We identify that this genome instability arises through defective nuclear import of 53BP1 as a consequence of abnormal topological arrangement of nucleoporin NUP153. We show for the first time that this nucleoporin is important for the nuclear localization of Ran and that the deregulated Ran gradient is likely to be compromising the nuclear import of 53BP1. Importantly, many of the defects associated with prelamin A expression were significantly reduced upon treatment with Remodelin, a small molecule recently reported to reverse deficiencies associated with abnormal nuclear lamina.  相似文献   

8.
A proliferation-related human protein prothymosin alpha displays exclusively nuclear localization when produced in human and Saccharomyces cerevisiae cells, whereas its isolated bipartite NLS confers nuclear targeting of the GFP reporter in human but not in yeast cells. To test whether this observation is indicative of the existence of specific requirements for nuclear targeting of proteins in yeast, a set of prothymosin alpha deletion mutants was constructed. Subcellular localization of these mutants fused to GFP was determined in yeast and compared with their ability to bind yeast importin alpha (Srp1p) in vitro. The NLS of prothymosin alpha turned out to be both necessary and sufficient to provide protein recognition by importin alpha. However, the NLS-importin alpha interaction did not ensure nuclear targeting of prothymosin alpha derivatives. This defect could be complemented by adding distinct prothymosin alpha sequences to the NLS-containing import substrate, possibly by providing binding site(s) for additional components of the yeast nuclear import machinery.  相似文献   

9.
Nuclear protein import is dependent on specific targeting signals within cargo proteins recognized by importins (IMPs) that mediate translocation through the nuclear pore. Recent evidence, however, implicates a role for the microtubule (MT) network in facilitating nuclear import of the cancer regulatory proteins parathyroid hormone-related protein (PTHrP) and p53 tumor suppressor. Here we assess the extent to which MT and actin integrity may be generally required for nuclear protein import for the first time. We examine 10 nuclear-localizing proteins with diverse IMP-dependent nuclear import pathways, our results indicating that the cytoskeleton does not have a general mechanistic role in nuclear localization sequence-dependent nuclear protein import. Of the proteins examined, only the p110(Rb) tumor suppressor protein Rb, together with p53 and PTHrP, was found to require MT integrity for optimal nuclear import. Fluorescence recovery after photobleaching experiments indicated that the MT-dependent nuclear transport pathway increases both the rate and extent of Rb nuclear import but does not affect Rb nuclear export. Dynamitin overexpression experiments implicate the MT motor dynein in the import process. The results indicate that, additional to IMP/diffusion-dependent processes, certain cancer regulatory proteins utilize an MT-enhanced pathway for accelerated nuclear import that is presumably required for their nuclear functions.  相似文献   

10.
Although A-type lamins are ubiquitously expressed, their role in the tissue-specificity of human laminopathies remains enigmatic. In this study, we generate a series of transfection constructs encoding missense lamin A mutant proteins fused to green fluorescent protein and investigate their subnuclear localization using quantitative live cell imaging. The mutant constructs used included the laminopathy-inducing lamin A rod domain mutants N195K, E358K, M371K, R386K, the tail domain mutants G465D, R482L, and R527P, and the Hutchinson-Gilford progeria syndrome-causing deletion mutant, progerin (LaA delta50). All mutant derivatives induced nuclear aggregates, except for progerin, which caused a more lobulated phenotype of the nucleus. Quantitative analysis revealed that the frequency of nuclear aggregate formation was significantly higher (two to four times) for the mutants compared to the wild type, although the level of lamin fusion proteins within nuclear aggregates was not. The distribution of endogenous A-type lamins was altered by overexpression of the lamin A mutants, coexpression experiments revealing that aberrant localization of the N195K and R386K mutants had no effect on the subnuclear distribution of histones H2A or H2B, or on nuclear accumulation of H2A overexpressed as a DsRed2 fusion protein. The GFP-lamin fusion protein-expressing constructs will have important applications in the future, enabling live cell imaging of nuclear processes involving lamins and how this may relate to the pathogenesis of laminopathies.  相似文献   

11.
Invertebrate lamins   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
Molecules can enter the nucleus by passive diffusion or active transport mechanisms, depending on their size. Small molecules up to size of 50-60 kDa or less than 10 nm in diameter can diffuse passively through the nuclear pore complex (NPC), while most proteins are transported by energy driven transport mechanisms. Active transport of viral proteins is mediated by nuclear localization signals (NLS), which were first identified in Simian Virus 40 large T antigen and had subsequently been identified in a large number of viral proteins. Usually they contain short stretches of lysine or arginine residues. These signals are recognized by the importin super-family (importin α and β) proteins that mediate the transport across the nuclear envelope through Ran-GTP. In contrast, only one class of the leucine-rich nuclear export signal (NES) on viral proteins is known at present. Chromosome region maintenance 1 (CRM1) protein mediates nuclear export of hundreds of viral proteins through the recognition of the leucine-rich NES.  相似文献   

14.
Srp1 (importin-α) can translocate proteins that contain a nuclear localization signal (NLS) into the nucleus. The loss of Srp1 is lethal, although several temperature-sensitive mutants have been described. Among these mutants, srp1-31 displays the characteristic nuclear import defect of importin-α mutants, whereas srp1-49 shows a defect in protein degradation. We characterized these and additional srp1 mutants to determine whether distinct mechanisms were required for intracellular proteolysis and the import of NLS-containing proteins. We determined that srp1 mutants that failed to import NLS-containing proteins (srp1-31 and srp1-55) successfully localized proteasomes to the nucleus. In contrast, srp1 mutants that did not target proteasomes to the nucleus (srp1-49 and srp1-E402Q) were able to import NLS-containing proteins. The proteasome targeting defect of specific srp1 mutants caused stabilization of nuclear substrates and overall accumulation of multiubiquitylated proteins. Co-expression of a member of each class of srp1 mutants corrected both the proteasome localization defect and the import of NLS-containing proteins. These findings indicate that the targeting of proteasomes to the nucleus occurs by a mechanism distinct from the Srp1-mediated import of nuclear proteins.  相似文献   

15.
Fused in sarcoma (FUS) is a nuclear protein that carries a proline‐tyrosine nuclear localization signal (PY‐NLS) and is imported into the nucleus via Transportin (TRN). Defects in nuclear import of FUS have been implicated in neurodegeneration, since mutations in the PY‐NLS of FUS cause amyotrophic lateral sclerosis (ALS). Moreover, FUS is deposited in the cytosol in a subset of frontotemporal lobar degeneration (FTLD) patients. Here, we show that arginine methylation modulates nuclear import of FUS via a novel TRN‐binding epitope. Chemical or genetic inhibition of arginine methylation restores TRN‐mediated nuclear import of ALS‐associated FUS mutants. The unmethylated arginine–glycine–glycine domain preceding the PY‐NLS interacts with TRN and arginine methylation in this domain reduces TRN binding. Inclusions in ALS‐FUS patients contain methylated FUS, while inclusions in FTLD‐FUS patients are not methylated. Together with recent findings that FUS co‐aggregates with two related proteins of the FET family and TRN in FTLD‐FUS but not in ALS‐FUS, our study provides evidence that these two diseases may be initiated by distinct pathomechanisms and implicates alterations in arginine methylation in pathogenesis.  相似文献   

16.
Mutations in ERK2 binding sites affect nuclear entry   总被引:3,自引:0,他引:3  
The MAPK ERK2 can enter and exit the nucleus by an energy-independent process that is facilitated by direct interactions with nuclear pore proteins. Several studies also suggest that the localization of ERK2 can be influenced by carrier proteins. Using import reconstitution assays, we examined a group of ERK2 mutants defective in known protein interactions to determine structural properties of ERK2 that contribute to its nuclear entry. ERK2 mutants defective in binding to substrates near the active site or to basic/hydrophobic docking (D) motifs were imported normally. Several ERK2 mutants defective in interactions with FXF motifs displayed slowed rates of nuclear import. The import-impaired mutants also showed reduced binding to a recombinant C-terminal fragment of nucleoporin 153 that is rich in FXF motifs. Despite the deficit revealed in some mutants via reconstitution assays, all but one of the ERK2 mutants accumulated in nuclei of stimulated cells in a manner comparable with the wild type protein; the mutant most defective in import remained in the cytoplasm. These results further support the idea that direct interactions with nucleoporins are involved in ERK2 nuclear entry and that multiple events contribute to the ligand-dependent relocalization of these protein kinases.  相似文献   

17.
The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, as mutations in SRY can cause XY sex reversal. Although some SRY missense mutations affect DNA binding and bending activities, it is unclear how others contribute to disease. The high mobility group domain of SRY has two nuclear localization signals (NLS). Sex-reversing mutations in the NLSs affect nuclear import in some patients, associated with defective importin-beta binding to the C-terminal NLS (c-NLS), whereas in others, importin-beta recognition is normal, suggesting the existence of an importin-beta-independent nuclear import pathway. The SRY N-terminal NLS (n-NLS) binds calmodulin (CaM) in vitro, and here we show that this protein interaction is reduced in vivo by calmidazolium, a CaM antagonist. In calmidazolium-treated cells, the dramatic reduction in nuclear entry of SRY and an SRY-c-NLS mutant was not observed for two SRY-n-NLS mutants. Fluorescence spectroscopy studies reveal an unusual conformation of SRY.CaM complexes formed by the two n-NLS mutants. Thus, CaM may be involved directly in SRY nuclear import during gonadal development, and disruption of SRY.CaM recognition could underlie XY sex reversal. Given that the CaM-binding region of SRY is well-conserved among high mobility group box proteins, CaM-dependent nuclear import may underlie additional disease states.  相似文献   

18.
The nuclear envelope is a double lipid bilayer that physically separates the functions of the nucleus and the cytoplasm of eukaryotic cells. Regulated transport of molecules between the nucleus and the cytoplasm is essential for normal cell metabolism and is mediated by large protein complexes, termed nuclear pore complexes (NPCs), which span the inner and outer membranes of the nuclear envelope. Significant progress has been made in the past 10 years in identifying the protein composition of NPCs and the basic molecular mechanisms by which these complexes facilitate the selective exchange of molecules between the nucleus and the cytoplasm. However, many fundamentally important questions about the functions of NPCs, the specific functions of individual NPC-associated proteins, and the assembly and disassembly of NPCs, remain unanswered. This review describes approaches for isolating and characterizing nuclear envelopes and NPC-associated proteins from mammalian cells. It is anticipated that these procedures can be used as a starting point for further molecular and biochemical analysis of the mammalian nuclear envelope, NPCs, and NPC-associated proteins.  相似文献   

19.
We report that herpes simplex virus type 1 (HSV-1) infection leads to the recruitment of protein kinase C (PKC) to the nuclear rim. In HEp-2 cells, PKC recruitment to the nuclear rim was initiated between 8 h and 12 h postinfection. PKCdelta, a proapoptotic kinase, was completely recruited to the nuclear rim upon infection with HSV-1. PKCalpha was less dramatically relocalized mostly at the nuclear rim upon infection, although some PKCalpha remained in the cytoplasm. PKCzeta-specific immunofluorescence was not significantly relocated to the nuclear rim. The UL34 and UL31 proteins, as well as their association, were each required for PKC recruitment to the nuclear rim. The HSV-1 US3 protein product, a kinase which regulates the phosphorylation state and localization of UL34, was not required for PKC recruitment to the nuclear rim; however, it was required for proper localization along the nuclear rim, as PKC appeared unevenly distributed along the nuclear rim of cells infected with US3 null and kinase-dead mutants. HSV-1 infection induced the phosphorylation of both lamin B and PKC. Elevated lamin B phosphorylation in HSV-1-infected cells was partially reduced by inhibitors of PKC. The data suggest a model in which kinases that normally disassemble the nuclear lamina during apoptosis are recruited to the nuclear membrane through functions requiring UL31 and UL34. We hypothesize that the recruitment of PKC functions to phosphorylate lamin B to help modify the nuclear lamina and promote budding of nucleocapsids at the inner nuclear membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号