首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lost of adenomatous polyposis coli gene (Apc) disturbs the migration of intestinal epithelial cells but the mechanisms have not been fully characterized. Since we have demonstrated that SK3/KCa2.3 channel promotes cancer cell migration, we hypothesized that Apc mutation may affect SK3/KCa2.3 channel-mediated colon epithelial cell motility. We report evidence that SK3/KCa2.3 channel promotes colon epithelial cells motility. Following Apc mutation SK3/KCa2.3 expression is largely reduced leading to a suppression of the SK3/KCa2.3 channel mediated-cell migration. Our findings reveal a previously unknown function of the SK3/KCa2.3 channel in epithelial colonic cells, and suggest that Apc is a powerful regulator SK3/KCa2.3 channel.  相似文献   

2.
Regulation of the number of Ca2+-activated K+ channels at the endothelial cell surface contributes to control of the endothelium-derived hyperpolarizing factor response, although this process is poorly understood. To address the fate of plasma membrane-localized KCa2.3, we utilized an extracellular epitope-tagged channel in combination with fluorescence and biotinylation techniques in both human embryonic kidney cells and the human microvascular endothelial cell line, HMEC-1. KCa2.3 was internalized from the plasma membrane and degraded with a time constant of 18 h. Cell surface biotinylation demonstrated that KCa2.3 was rapidly endocytosed and recycled back to the plasma membrane. Consistent with recycling, expression of a dominant negative (DN) RME-1 or Rab35 as well as wild type EPI64C, the Rab35 GTPase-activating protein, resulted in accumulation of KCa2.3 in an intracellular compartment. Expression of DN RME-1, DN Rab35, or wild type EPI64C resulted in a decrease in steady-state plasma membrane expression. Knockdown of EPI64C increased cell surface expression of KCa2.3. Furthermore, the effect of EPI64C was dependent upon its GTPase-activating proteins activity. Co-immunoprecipitation studies confirmed an association between KCa2.3 and both Rab35 and RME-1. In contrast to KCa2.3, KCa3.1 was rapidly endocytosed and degraded in an RME-1 and Rab35-independent manner. A series of N-terminal deletions identified a 12-amino acid region, Gly206–Pro217, as being required for the rapid recycling of KCa2.3. Deletion of Gly206–Pro217 had no effect on the association of KCa2.3 with Rab35 but significantly decreased the association with RME-1. These represent the first studies elucidating the mechanisms by which KCa2.3 is maintained at the plasma membrane.  相似文献   

3.
KCa3.1 is an intermediate conductance Ca2+-activated K+ channel that is expressed predominantly in hematopoietic cells, smooth muscle cells, and epithelia where it functions to regulate membrane potential, Ca2+ influx, cell volume, and chloride secretion. We recently found that the KCa3.1 channel also specifically requires phosphatidylinositol-3 phosphate [PI(3)P] for channel activity and is inhibited by myotubularin-related protein 6 (MTMR6), a PI(3)P phosphatase. We now show that PI(3)P indirectly activates KCa3.1. Unlike KCa3.1 channels, the related KCa2.1, KCa2.2, or KCa2.3 channels do not require PI(3)P for activity, suggesting that the KCa3.1 channel has evolved a unique means of regulation that is critical for its biological function. By making chimeric channels between KCa3.1 and KCa2.3, we identified a stretch of 14 amino acids in the carboxy-terminal calmodulin binding domain of KCa3.1 that is sufficient to confer regulation of KCa2.3 by PI(3)P. However, mutation of a single potential phosphorylation site in these 14 amino acids did not affect channel activity. These data together suggest that PI(3)P and these 14 amino acids regulate KCa3.1 channel activity by recruiting an as yet to be defined regulatory subunit that is required for Ca2+ gating of KCa3.1.  相似文献   

4.
Regulation of the number of ion channels at the plasma membrane is a critical component of the physiological response. We recently demonstrated that the Ca(2+)-activated K(+) channel, KCa2.3 is rapidly endocytosed and enters a Rab35- and EPI64C-dependent recycling compartment. Herein, we addressed the early endocytic steps of KCa2.3 using a combination of fluorescence and biotinylation techniques. We demonstrate that KCa2.3 is localized to caveolin-rich domains of the plasma membrane using fluorescence co-localization, transmission electron microscopy and co-immunoprecipitation (co-IP). Further, in cells lacking caveolin-1, we observed an accumulation of KCa2.3 at the plasma membrane as well as a decreased rate of endocytosis, as assessed by biotinylation. We also demonstrate that KCa2.3 and dynamin II are co-localized following endocytosis as well as demonstrating they are associated by co-IP. Further, expression of K44A dynamin II resulted in a 2-fold increase in plasma membrane KCa2.3 as well as a 3-fold inhibition of endocytosis. Finally, we evaluated the role of Rab5 in the endocytosis of KCa2.3. We demonstrate that expression of a dominant active Rab5 (Q79L) results in the accumulation of newly endocytosed KCa2.3 on to the membrane of the Rab5-induced vacuoles. We confirmed this co-localization by co-IP; demonstrating that KCa2.3 and Rab5 are associated. As expected, if Rab5 is required for the endocytosis of KCa2.3, expression of a dominant negative Rab5 (S34N) resulted in an approximate 2-fold accumulation of KCa2.3 at the plasma membrane. This was confirmed by siRNA-mediated knockdown of Rab5. Expression of the dominant negative Rab5 also resulted in a decreased rate of KCa2.3 endocytosis. These results demonstrate that KCa2.3 is localized to a caveolin-rich domain within the plasma membrane and is endocytosed in a dynamin- and Rab5-dependent manner prior to entering the Rab35/EPI64C recycling compartment and returning to the plasma membrane.  相似文献   

5.

Background

Ca2+-activated K+ channels have been implicated in cancer cell growth, metastasis, and tumor angiogenesis. Here we hypothesized that high mRNA and protein expression of the intermediate-conductance Ca2+-activated K+ channel, KCa3.1, is a molecular marker of clear cell Renal Cell Carcinoma (ccRCC) and metastatic potential and survival.

Methodology/Principal Findings

We analyzed channel expression by qRT-PCR, immunohistochemistry, and patch-clamp in ccRCC and benign oncocytoma specimens, in primary ccRCC and oncocytoma cell lines, as well as in two ccRCC cell lines (Caki-1 and Caki-2). CcRCC specimens contained 12-fold higher mRNA levels of KCa3.1 than oncocytoma specimens. The large-conductance channel, KCa1.1, was 3-fold more highly expressed in ccRCC than in oncocytoma. KCa3.1 mRNA expression in ccRCC was 2-fold higher than in the healthy cortex of the same kidney. Disease specific survival trended towards reduction in the subgroup of high-KCa3.1-expressing tumors (p<0.08 vs. low-KCa3.1-expressing tumors). Progression-free survival (time to metastasis/recurrence) was reduced significantly in the subgroup of high-KCa3.1-expressing tumors (p<0.02, vs. low-KCa3.1-expressing tumors). Immunohistochemistry revealed high protein expression of KCa3.1 in tumor vessels of ccRCC and oncocytoma and in a subset of ccRCC cells. Oncocytoma cells were devoid of KCa3.1 protein. In a primary ccRCC cell line and Caki-1/2-ccRCC cells, we found KCa3.1-protein as well as TRAM-34-sensitive KCa3.1-currents in a subset of cells. Furthermore, Caki-1/2-ccRCC cells displayed functional Paxilline-sensitive KCa1.1 currents. Neither KCa3.1 nor KCa1.1 were found in a primary oncocytoma cell line. Yet KCa-blockers, like TRAM-34 (KCa3.1) and Paxilline (KCa1.1), had no appreciable effects on Caki-1 proliferation in-vitro.

Conclusions/Significance

Our study demonstrated expression of KCa3.1 in ccRCC but not in benign oncocytoma. Moreover, high KCa3.1-mRNA expression levels were indicative of low disease specific survival of ccRCC patients, short progression-free survival, and a high metastatic potential. Therefore, KCa3.1 is of prognostic value in ccRCC.  相似文献   

6.
In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400) interact with the NBD2 segment (G1237-Y1420) and C- region of CFTR (residues T1387-L1480), respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1) that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2) that KCa3.1 and CFTR form a dynamic complex, the formation of which depends on internal Ca2+.  相似文献   

7.
In the present study we evaluated the expression of the intermediate conductance calcium-activated potassium (KCa3.1) channel in human glioblastoma stem-like cells (CSCs) and investigated its role in cell motility. While the KCa3.1 channel is not expressed in neuronal- and glial-derived tissues of healthy individuals, both the KCa3.1 mRNA and protein are present in the glioblastoma tumor population, and are significantly enhanced in CSCs derived from both established cell line U87MG and a primary cell line, FCN9. Consistent with these data, voltage-independent and TRAM-34 sensitive potassium currents imputable to the KCa3.1 channel were recorded in the murine GL261 cell line and several primary human glioblastoma cells lines. Moreover, a significantly higher KCa3.1 current was recorded in U87MG-CD133 positive cells as compared to the U87MG-CD133 negative subpopulation. Further, we found that the tumor cell motility is strongly associated with KCa3.1 channel expression. Blockade of the KCa3.1 channel with the specific inhibitor TRAM-34 has in fact a greater impact on the motility of CSCs (reduction of 75%), which express a high level of KCa3.1 channel, than on the FCN9 parental population (reduction of 32%), where the KCa3.1 channel is expressed at lower level. Similar results were also observed with the CSCs derived from U87MG. Because invasion of surrounding tissues is one of the main causes of treatment failure in glioblastoma, these findings can be relevant for future development of novel cancer therapeutic drugs.  相似文献   

8.
Fibroblast-like synoviocytes (FLS) play important roles in the pathogenesis of rheumatoid arthritis (RA). Potassium channels have regulatory roles in many cell functions. We have identified the calcium- and voltage-gated KCa1.1 channel (BK, Maxi-K, Slo1, KCNMA1) as the major potassium channel expressed at the plasma membrane of FLS isolated from patients with RA (RA-FLS). We further show that blocking this channel perturbs the calcium homeostasis of the cells and inhibits the proliferation, production of VEGF, IL-8, and pro-MMP-2, and migration and invasion of RA-FLS. Our findings indicate a regulatory role of KCa1.1 channels in RA-FLS function and suggest this channel as a potential target for the treatment of RA.  相似文献   

9.
Caveolin family is supposed to be essential molecules for the formation of not only caveola structure on cell membrane but also functional molecular complexes in them with direct and/or indirect interaction with other membrane and/or submembrane associated proteins. The direct coupling of caveolin-1 (cav1) with large conductance Ca2+-activated K+ channel, KCa1.1 has been established in several types of cells and in expression system as well. The possible interaction of caveolin-3 (cav3), which shows expression in some differential tissues from cav1, with KCa1.1 remains to be determined. In the present study, the density of KCa1.1 current expressed in HEK293 cells was significantly reduced by the co-expression of cav3, as well as cav1. The co-localization and direct interaction of GFP- or CFP-labeled cav3 (GFP/CFP-cav3) with YFP- or mCherry-labeled KCa1.1 (KCa1.1-YFP/mCherry) were clearly demonstrated by single molecular image analyses using total internal reflection fluorescence (TIRF) microscopy and fluorescence resonance energy transfer (FRET) analyses with acceptor photobleaching method. The deletion of suggested cav1-binding motif in C terminus region of KCa1.1 (KCa1.1ΔCB-YFP) resulted in the marked decrease in cell surface expression, co-localization and FRET efficiency with CFP-cav3 and CFP-cav1. The FLAG-KCa1.1 co-immunoprecipitation with GFP-cav3 or GFP-cav1 also supported their direct molecular interaction. These results strongly suggest that cav3 possesses direct interaction with KCa1.1, presumably at the same domain for cav1 binding. This interaction regulates KCa1.1 expression to cell surface and the formation of functional molecular complex in caveolae in living cells.  相似文献   

10.
The role of positively charged arginines in the fourth transmembrane domain (S4) and a single negatively charged amino acid in the third transmembrane domain (S3) on channel biogenesis and gating of voltage-gated K(+) channels (Kv) has been well established. Both intermediate (KCa3.1) and small (KCa2.x) conductance, Ca(2+)-activated K(+) channels have two conserved arginines in S4 and a single conserved glutamic acid in S3, although these channels are voltage-independent. We demonstrate that mutation of any of these charged amino acids in KCa3.1 or KCa2.3 to alanine, glutamine, or charge reversal mutations results in a rapid degradation (<30 min) of total protein, confirming the critical role of these amino acids in channel biogenesis. Mutation of the S4 arginine closest to the cytosolic side of KCa3.1 to histidine resulted in expression at the cell surface. Excised patch clamp experiments revealed that this Arg/His mutation had a dramatically reduced open probability (P(o)), relative to wild type channels. Additionally, we demonstrate, using a combination of short hairpin RNA, dominant negative, and co-immunoprecipitation studies, that both KCa3.1 and KCa2.3 are translocated out of the endoplasmic reticulum associated with Derlin-1. These misfolded channels are poly-ubiquitylated, recognized by p97, and targeted for proteasomal degradation. Our results suggest that S3 and S4 charged amino acids play an evolutionarily conserved role in the biogenesis and gating of KCa channels. Furthermore, these improperly folded K(+) channels are translocated out of the endoplasmic reticulum in a Derlin-1- and p97-dependent fashion, poly-ubiquitylated, and targeted for proteasomal degradation.  相似文献   

11.
Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit.  相似文献   

12.
Allograft vasculopathy (AV) remains one of the major challenges to the long-term functioning of solid organ transplants. Although its exact pathogenesis remains unclear, AV is characterized by both fibromuscular proliferation and infiltration of CD4+ memory T cells. We here tested whether two experimental immunosuppressants targeting K+ channels might be useful for preventing AV. PAP-1 inhibits the voltage-gated Kv1.3 channel, which is overexpressed on CCR7 memory T cells and we therefore hypothesize that it should suppress the memory T cell component of AV. Based on its previous efficacy in restenosis and kidney fibrosis we expected that the KCa3.1 blocker TRAM-34 would primarily affect smooth muscle and fibroblast proliferation and thus reduce intimal hyperplasia. Using immunohistochemistry we demonstrated the presence of Kv1.3 on infiltrating T cells and of KCa3.1 on lymphocytes as well as on proliferating neointimal smooth muscle cells in human vasculopathy samples and in a rat aorta transplant model developing chronic AV. Treatment of PVG rats receiving orthotopically transplanted aortas from ACI rats with TRAM-34 dose-dependently reduced aortic luminal occlusion, intimal hyperplasia, mononuclear cell infiltration and collagen deposition 120 days after transplantation. The Kv1.3 blocker PAP-1 in contrast did not reduce intima hyperplasia despite drastically reducing plasma IFN-γ levels and inhibiting lymphocyte infiltration. Our findings suggest that KCa3.1 channels play an important role in the pathogenesis of chronic AV and constitute an attractive target for the prevention of arteriopathy.  相似文献   

13.
Myotubularins (MTM) are a large subfamily of lipid phosphatases that specifically dephosphorylate at the D3 position of phosphatidylinositol 3-phosphate (PI(3)P) in PI(3)P and PI(3,5)P2. We recently found that MTMR6 specifically inhibits the Ca2+-activated K+ channel, KCa3.1, by dephosphorylating PI(3)P. We now show that inhibition is specific for MTMR6 and other MTMs do not inhibit KCa3.1. By replacing either or both of the coiled-coil (CC) and pleckstrin homology/GRAM (PH/G) domains of MTMs that failed to inhibit KCa3.1 with the CC and PH/G domains of MTMR6, we found that chimeric MTMs containing both the MTMR6 CC and PH/G domains functioned like MTMR6 to inhibit KCa3.1 channel activity, whereas chimeric MTMs containing either domain alone did not. Immunofluorescent microscopy demonstrated that both the MTMR6 CC and PH/G domains are required to co-localize MTMR6 to the plasma membrane with KCa3.1. These findings support a model in which two specific low affinity interactions are required to co-localize MTMR6 with KCa3.1: 1) between the CC domains on MTMR6 and KCa3.1 and (2) between the PH/G domain and a component of the plasma membrane. Our inability to detect significant interaction of the MTMR6 G/PH domain with phosphoinositides suggests that this domain may bind a protein. Identifying the specific binding partners of the CC and PH/G domains on other MTMs will provide important clues to the specific functions regulated by other MTMs as well as the mechanism(s) whereby loss of some MTMs lead to disease.  相似文献   

14.
Ion transport across the cell membrane mediated by channels and carriers participate in the regulation of tumour cell survival, death and motility. Moreover, the altered regulation of channels and carriers is part of neoplastic transformation. Experimental modification of channel and transporter activity impacts tumour cell survival, proliferation, malignant progression, invasive behaviour or therapy resistance of tumour cells. A wide variety of distinct Ca2+ permeable channels, K+ channels, Na+ channels and anion channels have been implicated in tumour growth and metastasis. Further experimental information is, however, needed to define the specific role of individual channel isoforms critically important for malignancy. Compelling experimental evidence supports the assumption that the pharmacological inhibition of ion channels or their regulators may be attractive targets to counteract tumour growth, prevent metastasis and overcome therapy resistance of tumour cells. This short review discusses the role of Ca2+ permeable channels, K+ channels, Na+ channels and anion channels in tumour growth and metastasis and the therapeutic potential of respective inhibitors.  相似文献   

15.
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a plasma membrane ion channel linked to a cytosolic protein kinase domain. Genetic inactivation of this bi-functional protein revealed its crucial role in Ca2+ signalling, Mg2+ metabolism, immune responses, cell motility, proliferation and differentiation. Malfunctions of TRPM7 are associated with anoxic neuronal death, cardiac fibrosis, tumour progression and macrothrombocytopenia. Recently, several groups have identified small organic compounds acting as inhibitors or activators of the TRPM7 channel. In follow-up studies, the identified TRPM7 modulators were successfully used to uncover new cellular functions of TRPM7 in situ including a crucial role of TRPM7 in Ca2+ signaling and Ca2+ dependent cellular processes. Hence, TRPM7 has been defined as a promising drug target. Here, we summarize the progress in this quickly developing field.  相似文献   

16.

Background

KCa3.1 channels are calcium/calmodulin-regulated voltage-independent K+ channels that produce membrane hyperpolarization and shape Ca2+-signaling and thereby physiological functions in epithelia, blood vessels, and white and red blood cells. Up-regulation of KCa3.1 is evident in fibrotic and inflamed tissues and some tumors rendering the channel a potential drug target. In the present study, we searched for novel potent small molecule inhibitors of KCa3.1 by testing a series of 20 selected natural and synthetic (poly)phenols, synthetic benzoic acids, and non-steroidal anti-inflammatory drugs (NSAIDs), with known cytoprotective, anti-inflammatory, and/or cytostatic activities.

Methodology/Principal Findings

In electrophysiological experiments, we identified the natural phenols, caffeic acid (EC50 1.3 µM) and resveratrol (EC50 10 µM) as KCa3.1 inhibitors with moderate potency. The phenols, vanillic acid, gallic acid, and hydroxytyrosol had weak or no blocking effects. Out of the NSAIDs, flufenamic acid was moderately potent (EC50 1.6 µM), followed by mesalamine (EC50≥10 µM). The synthetic fluoro-trivanillic ester, 13b ([3,5-bis[(3-fluoro-4-hydroxy-benzoyl)oxymethyl]phenyl]methyl 3-fluoro-4-hydroxy-benzoate), was identified as a potent mixed KCa2/3 channel inhibitor with an EC50 of 19 nM for KCa3.1 and 360 pM for KCa2.3, which affected KCa1.1 and Kv channels only at micromolar concentrations. The KCa3.1/KCa2-activator SKA-31 antagonized the 13b-blockade. In proliferation assays, 13b was not cytotoxic and reduced proliferation of 3T3 fibroblasts as well as caffeic acid. In isometric vessel myography, 13b increased contractions of porcine coronary arteries to serotonin and antagonized endothelium-derived hyperpolarization-mediated vasorelaxation to pharmacological KCa3.1/KCa2.3 activation.

Conclusions/Significance

We identified the natural phenols, caffeic acid and resveratrol, the NSAID, flufenamic acid, and the polyphenol 13b as novel KCa3.1 inhibitors. The high potency of 13b with pan-activity on KCa3.1/KCa2 channels makes 13b a new pharmacological tool to manipulate inflammation and cancer growth through KCa3.1/KCa2 blockade and a promising template for new drug design.  相似文献   

17.
The HIV-1 Nef protein plays an important role in the development of the pathology associated with AIDS. Despite various studies that have dealt with different aspects of Nef function, the complete mechanism by which it alters the physiology of infected cells remains to be established. Nef can associate with cell membranes, therefore supporting the hypothesis that it might interact with membrane proteins as ionic channels and modify their electrical properties. By using the patch-clamp technique, we found that Nef expression determines a 25-mV depolarization of lymphoblastoid CEM cells. Both charybdotoxin (CTX) and the membrane-permeable Ca2+ chelator BAPTA/AM depolarized the membrane of native cells without modifying that of Nef-transfected cells. These data suggested that the resting potential in native CEM cells is settled by a CTX- and Ca2+-sensitive K+ channel (KCa,CTX), whose activity is absent in Nef-expressing cells. This was confirmed by direct measurements of whole-cell KCa,CTX currents. Single-channel recordings on excised patches showed that a KCa,CTX channel of 35 pS with a half-activation near 400 nM Ca2+ was present in both native and Nef-transfected cells. The measurements of free intracellular Ca2+ were not different in the two cell lines, but Nef-transfected cells displayed an increased Ca2+ content in ionomycin-sensitive stores. Taken together, these results indicate that Nef expression alters the resting membrane potential of the T lymphocyte cell line by inhibiting a KCa,CTX channel, possibly by intervening in the regulation of intracellular Ca2+ homeostasis.  相似文献   

18.
Endothelial small and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) play an important role in the regulation of vascular function and systemic blood pressure. Growing evidence indicates that they are intimately involved in agonist-evoked vasodilation of small resistance arteries throughout the circulation. Small molecule activators of KCa2.x and 3.1 channels, such as SKA-31, can acutely inhibit myogenic tone in isolated resistance arteries, induce effective vasodilation in intact vascular beds, such as the coronary circulation, and acutely decrease systemic blood pressure in vivo. The blood pressure-lowering effect of SKA-31, and early indications of improvement in endothelial dysfunction suggest that endothelial KCa channel activators could eventually be developed into a new class of endothelial targeted agents to combat hypertension or atherosclerosis. This review summarises recent insights into the activation of endothelial Ca2+ activated K+ channels in various vascular beds, and how tools, such as SKA-31, may be beneficial in disease-related conditions.  相似文献   

19.
20.
T cell receptor engagement results in the reorganization of intracellular and membrane proteins at the T cell-antigen presenting cell interface forming the immunological synapse (IS), an event required for Ca2+ influx. KCa3.1 channels modulate Ca2+ signaling in activated T cells by regulating the membrane potential. Nothing is known regarding KCa3.1 membrane distribution during T cell activation. Herein, we determined whether KCa3.1 translocates to the IS in human T cells using YFP-tagged KCa3.1 channels. These channels showed electrophysiological and pharmacological properties identical to wild-type channels. IS formation was induced by either anti-CD3/CD28 antibody-coated beads for fixed microscopy experiments or Epstein-Barr virus-infected B cells for fixed and live cell microscopy. In fixed microscopy experiments, T cells were also immunolabeled for F-actin or CD3, which served as IS formation markers. The distribution of KCa3.1 was determined with confocal and fluorescence microscopy. We found that, upon T cell activation, KCa3.1 channels localize with F-actin and CD3 to the IS but remain evenly distributed on the cell membrane when no stimulus is provided. Detailed imaging experiments indicated that KCa3.1 channels are recruited in the IS shortly after antigen presentation and are maintained there for at least 15–30 min. Interestingly, pretreatment of activated T cells with the specific KCa3.1 blocker TRAM-34 blocked Ca2+ influx, but channel redistribution to the IS was not prevented. These results indicate that KCa3.1 channels are a part of the signaling complex that forms at the IS upon antigen presentation. T cell activation; ion channels; membrane distribution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号