首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylorithat was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H. pylori interaction with the human gastric epithelium. Here, we show that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation.  相似文献   

2.
The bacterium Helicobacter pylori can cause peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. The cell-surface mucin MUC1 is a large glycoprotein which is highly expressed on the mucosal surface and limits the density of H. pylori in a murine infection model. We now demonstrate that by using the BabA and SabA adhesins, H. pylori bind MUC1 isolated from human gastric cells and MUC1 shed into gastric juice. Both H. pylori carrying these adhesins, and beads coated with MUC1 antibodies, induced shedding of MUC1 from MKN7 human gastric epithelial cells, and shed MUC1 was found bound to H. pylori. Shedding of MUC1 from non-infected cells was not mediated by the known MUC1 sheddases ADAM17 and MMP-14. However, knockdown of MMP-14 partially affected MUC1 release early in infection, whereas ADAM17 had no effect. Thus, it is likely that shedding is mediated both by proteases and by disassociation of the non-covalent interaction between the α- and β-subunits. H. pylori bound more readily to MUC1 depleted cells even when the bacteria lacked the BabA and SabA adhesins, showing that MUC1 inhibits attachment even when bacteria cannot bind to the mucin. Bacteria lacking both the BabA and SabA adhesins caused less apoptosis in MKN7 cells than wild-type bacteria, having a greater effect than deletion of the CagA pathogenicity gene. Deficiency of MUC1/Muc1 resulted in increased epithelial cell apoptosis, both in MKN7 cells in vitro, and in H. pylori infected mice. Thus, MUC1 protects the epithelium from non-MUC1 binding bacteria by inhibiting adhesion to the cell surface by steric hindrance, and from MUC1-binding bacteria by acting as a releasable decoy.  相似文献   

3.
Helicobacter pylori, a Gram-negative, microaerophilic bacterium found in the stomach, is assumed to be associated with carcinogenesis, invasion and metastasis in digestive diseases. Cytotoxin-associated gene A (CagA) is an oncogenic protein of H. pylori that is encoded by a Cag pathogenicity island related to the development of gastric cancer. The epithelial–mesenchymal transition (EMT) is the main biological event in invasion or metastasis of epithelial cells. H. pylori may promote EMT in human gastric cancer cell lines, but the specific mechanisms are still obscure. We explored the underlying molecular mechanism of EMT induced by H. pylori CagA in gastric cancer. In our article, we detected gastric cancer specimens and adjacent non-cancerous specimens by immunohistochemistry and found increased expression of the EMT-related regulatory protein TWIST1 and the mesenchymal marker vimentin in cancer tissues, while programmed cell death factor 4 (PDCD4) and the epithelial marker E-cadherin expression decreased in cancer specimens. These changes were associated with degree of tissue malignancy. In addition, PDCD4 and TWIST1 levels were related. In gastric cancer cells cocultured with CagA expression plasmid, CagA activated TWIST1 and vimentin expression, and inhibited E-cadherin expression by downregulating PDCD4. CagA also promoted mobility of gastric cancer cells by regulating PDCD4. Thus, H. pylori CagA induced EMT in gastric cancer cells, which reveals a new signaling pathway of EMT in gastric cancer cell lines.  相似文献   

4.
5.
6.
7.
8.
9.
Helicobacter pylori-induced inflammation significantly increases the risk of gastric cancer. To investigate the role of H. pylori infection in gastric epithelial cell carcinogenesis, flow cytometry was used to analyze the apoptosis of gastric epithelial cells infected by H. pylori. Next, LTQ MS mass spectrometry (MS) was applied to identify protein changes in gastric epithelial cells infected with H. pylori, and then bioinformatics was adopted to analyze the cellular localization and biological function of differential proteins. LTQ MS/MS successfully identified identified 22 differential proteins successfully, including 20 host-cell proteins and two H. pylori bacterial proteins. Also, human proteins were located in all areas of cells and involved in various cell biological functions. The oncogene proteins p53, p16, and C-erbB-2 proteins in H. pylori-infected RGM-1 cells were remarkably increased from the analysis by Western blot analysis. H. pylori infection of gastric epithelial cells leads to changes in various protein components in the cell, and enhances the expression of oncogene proteins, thereby increasing the possibility of possibility of carcinogenesis of H. pylori infection.  相似文献   

10.
Helicobacter pylori (H. pylori) infection plays an important role in gastric carcinogenesis. This bacterium may induce cancer transformation and change the susceptibility of gastric mucosa cells to various exogenous dietary irritants. The aim of the study was to evaluate the influence of H. pylori infection on the reaction of the stomach cells to a genotoxic effect of heterocyclic amines (HCAs). These well-known mutagens are formed during cooking of protein-rich foods, primarily meat. Taking into account that persons consuming a mixed-western diet are exposed to these compound nearly an entire lifetime and more than half of human population is infected with H. pylori, it is important to assess the combined effect of H. pylori infection and HCAs in the context of DNA damage in gastric mucosa cells, which is a prerequisite to cancer transformation. We employed 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) because these substances are present in a great amount in cooked and fried meat. Using alkaline comet assay, we showed that the extent of the DNA damage induced by HCAs was significantly higher in H. pylori infected gastric mucosa cells than in non-infected counterparts. We did not observed any difference in the efficiency of repair of DNA lesions induced by HCAs in both type of cells. Vitamin C reduced the genotoxic effects of HCAs in H. pylori infected and non-infected gastric mucosa cells. Melatonin more effectively decreased DNA damage caused by HCAs in H. pylori infected gastric mucosa cells as compared with control. Our results suggest that H. pylori infection may influence the susceptibility of gastric mucosa cells to HCAs and dietary antioxidative substances, including vitamin C and melatonin may inhibit the genotoxic effects of HCAs on gastric mucosa cells and may reduce the risk of carcinogenesis caused by food borne mutagens and H. pylori infection.  相似文献   

11.
It is supposed that human pathogens, e.g. Helicobacter pylori abuse lipid raft domains on the host cell plasma membrane to infect the cell. Investigating DRM-associated molecules we identified the transmembrane adapter proteins (TRAPs), non-T cell activation linker (NTAL) and lymphocyte-specific protein tyrosine kinase (Lck)-interacting membrane protein (LIME) to be regulated by H. pylori in the human epithelial cell line HCA-7. Up to now, raft-associated TRAPs were exclusively described to mediate signal propagation downstream of antigen receptors. Our results posed the question whether these proteins adopt a role in H. pylori-infected epithelial cells too. Our studies revealed that H. pylori induces tyrosine phosphorylation of NTAL as well as LIME within 15 min of infection. We observed that activated NTAL and LIME bind to the Src homology 2 (SH2)-domain of growth factor receptor-bound protein 2 (Grb2) within 15 to 30 min of infection and associate with the c-Met receptor. Further, NTAL has a contributory role in regulating H. pylori-induced extracellular signal-regulated kinase (ERK) activation. After suppression of NTAL protein levels by siRNA, ERK phosphorylation was reduced to approximately 50%. Additionally, the knockdown of NTAL suppressed the phosphorylation of cytosolic phospholipase A2 (cPLA2). Activated cPLA2 catalyzes the release of arachidonic acid (AA), whose metabolites are pivotal mediators in the H. pylori-induced inflammatory response. Thus, we propose that NTAL participates in the activation of the c-Met-Grb2-ERK-cPLA2 signalling cascade at early stages of H. pylori infection.  相似文献   

12.
Helicobacter pylori (H. pylori) infection is associated with chronic gastritis, peptic ulcer and gastric cancer. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Here we show that human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death receptor signaling. Human gastric epithelial cells are intrinsically resistant to TRAIL-mediated apoptosis. The induction of TRAIL sensitivity by H. pylori is dependent on the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex (DISC) through downregulation of cellular FLICE-inhibitory protein (FLIP). Overexpression of FLIP abolished the H. pylori-induced TRAIL sensitivity in human gastric epithelial cells. Our study thus demonstrates that H. pylori induces sensitivity to TRAIL apoptosis by regulation of FLIP and assembly of DISC, which initiates caspase activation, resulting in the breakdown of resistance to apoptosis, and provides insight into the pathogenesis of gastric damage in Helicobacter infection. Modulation of host apoptosis signaling by bacterial interaction adds a new dimension to the pathogenesis of Helicobacter.  相似文献   

13.
Heat shock proteins (HSPs) are crucial proteins in maintaining the homeostasis of human gastric epithelial cells. Tumor necrosis factor receptor-associated protein 1 (TRAP1), a member of the HSP90 family, has been shown to be involved in various crucial physiological processes, particularly against apoptosis. However, the regulation and function of TRAP1 in Helicobacter pylori infection is still unknown. Here, we found that TRAP1 expression was downregulated on human gastric epithelial cells during H. pylori infection by real-time polymerase chain reaction (PCR) and western blot analysis. Through virulence factors mutant H. pylori strains infection and inhibitors screening, we found that H. pylori vacuolating cytotoxin A ( vacA), but not cytotoxin-associated gene A ( cagA) protein, induced human gastric epithelial cells to downregulate TRAP1 via P38MAPK pathway by real-time PCR and western blot analysis. Furthermore, downregulation of TRAP1 with lentivirus carrying TRAP1 short hairpin RNA constructs impairs mitochondrial function, and increases apoptosis of gastric epithelial cells. The results indicate that H. pylori vacA downregulated TRAP1 is involved in the regulation of gastric epithelial cell apoptosis.  相似文献   

14.
Infection with Helicobacter pylori leads to gastritis, peptic ulcers and gastric cancer. Moreover, when the gastric mucosa is exposed to H. pylori, gastric mucosal inflammatory cytokine interleukin‐8 (Il‐8) and reactive oxygen species increase. Anthocyanins have anti‐oxidative, antibacterial and anti‐inflammatory properties. However, the effect of anthocyanins in H. pylori‐infected cells is not yet clear. In this study, therefore, the effect of anthocyanins on H. pylori‐infected human gastric epithelial cells was examined. AGS cells were pretreated with anthocyanins for 24 hrs followed by H. pylori 26695 infection for up to 24 hrs. Cell viability and ROS production were examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide and 2′,7′–dichlorofluorescein diacetate assay, respectively. Western blot analyses and RT‐PCR were performed to assess gene and protein expression, respectively. IL‐8 secretion in AGS cells was measured by ELISA. It was found that anthocyanins decrease H. pylori‐induced ROS enhancement. Anthocyanins also inhibited phosphorylation of mitogen‐activated protein kinases, translocation of nuclear factor‐kappa B and Iκβα degradation. Furthermore anthocyanins inhibited H. pylori‐induced inducible nitric oxide synthases and cyclooxygenase‐2 mRNA expression and inhibited IL‐8 production by 45.8%. Based on the above findings, anthocyanins might have an anti‐inflammatory effect in H. pylori‐infected gastric epithelial cells.  相似文献   

15.
Previous studies have demonstrated that valosin-containing protein (VCP) is associated with H. pylori-induced gastric carcinogenesis. By identifying the interactome of VCP overexpressed in AGS cells using a subtractive proteomics approach, we aimed to characterize the cellular responses mediated by VCP and its functional roles in H. pylori-associated gastric cancer. VCP immunoprecipitations followed by proteomic analysis identified 288 putative interacting proteins, 18 VCP-binding proteins belonged to the PI3K/Akt signaling pathway. H. pylori infection increased the interaction between Akt and VCP, Akt-dependent phosphorylation of VCP, levels of ubiquitinated proteins, and aggresome formation in AGS cells. Furthermore, phosphorylated VCP co-localized with the aggresome, bound ubiquitinated proteins, and increased the degradation of cellular regulators to protect H. pylori-infected AGS cells from apoptosis. Our study demonstrates that VCP phosphorylation following H. pylori infection promotes both gastric epithelial cell survival, mediated by the PI3K/Akt pathway, and the degradation of cellular regulators. These findings provide novel insights into the mechanisms of H. pylori infection induced gastric carcinogenesis.  相似文献   

16.
Background. Cell cycle regulatory proteins may be critical targets during carcinogenesis. We have previously shown that chronic H. pylori infection is associated with decreased expression of the cyclin dependent kinase inhibitor (CDI) p27kip1. Loss of p27kip1 and p16Ink4a (p16) expression, another CDI, has been reported during the progression of gastric tubular adenomas to advanced gastric cancer. The aim of the current study was to examine whether H. pylori infection also affects the expression of p16 in the gastric mucosa of H. pylori‐infected patients. Methods. p16 expression was evaluated in gastric antral biopsies by immunohistochemistry in 50 patients with nonulcer dyspepsia (n = 18 uninfected, n = 32 H. pylori infected, 24 by cagA+ strains). Adjacent sections were stained for proliferating epithelial cells (by Ki67) and for apoptotic cells (by TUNEL assay). Results. Both in H. pylori infected and uninfected patients the expression of p16 was higher in the neck and base of the gland than in the foveolar region. Epithelial staining for p16 was increased with H. pylori infection (31.3% vs. 11.1% in the foveolar region, 68.8% vs. 27.8% in the neck and 75% vs. 50% in the glandular base). There was no correlation between the expression of 16 and proliferation but there was a significant positive correlation between apoptosis and 16 immunostaining. Conclusions. The tumor suppressor gene 16 is over expressed in gastric epithelial cells of H. pylori infected patients and this is associated with an increase in apoptosis. These findings suggest a possible role for this cell cycle regulator in the increase in gastric cell turnover that is associated with H. pylori infection.  相似文献   

17.
Helicobacter pylori infection constitutes one of the major risk factors for the development of gastric diseases including gastric cancer. The activation of nuclear factor‐kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) via classical and alternative pathways is a hallmark of H. pylori infection leading to inflammation in gastric epithelial cells. Tumor necrosis factor receptor‐associated factor (TRAF)‐interacting protein with forkhead‐associated domain (TIFA) was previously suggested to trigger classical NF‐κB activation, but its role in alternative NF‐κB activation remains unexplored. Here, we identify TRAF6 and TRAF2 as binding partners of TIFA, contributing to the formation of TIFAsomes upon H. pylori infection. Importantly, the TIFA/TRAF6 interaction enables binding of TGFβ‐activated kinase 1 (TAK1), leading to the activation of classical NF‐κB signaling, while the TIFA/TRAF2 interaction causes the transient displacement of cellular inhibitor of apoptosis 1 (cIAP1) from TRAF2, and proteasomal degradation of cIAP1, to facilitate the activation of the alternative NF‐κB pathway. Our findings therefore establish a dual function of TIFA in the activation of classical and alternative NF‐κB signaling in H. pylori‐infected gastric epithelial cells.  相似文献   

18.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号