首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.  相似文献   

2.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   

3.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurrs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis. (Mol Cell Biochem 264: 51–61, 2004)  相似文献   

4.
Beilmann M  Birk G  Lenter MC 《Cytokine》2004,26(4):178-185
Therapeutic angiogenesis aims to induce blood vessel growth in acute or chronic ischemic tissues and has gained tremendous interest over the last years. To study factors and combinations thereof that potentially induce or modify angiogenesis and to evaluate their therapeutic potential, various in vitro assays have been developed. Although endothelial cells have attracted most attention in these assays, they alone cannot complete vessel maturation since extracellular matrix (ECM) components and mesenchymal cells also play an important role in vascular development. To address this complexity we focussed on a human co-culture angiogenesis assay comprising primary endothelial cells as well as primary ECM-producing fibroblasts. In this assay HGF and VEGF as single factors and combined were tested for the potential to induce an angiogenic response, which was detected by image analysis assessing the area, length and branches of the formed vascular structures. The results show that the cytokines HGF and VEGF both promote angiogenesis in this co-culture assay by inducing distinguishable patterns of vascular structures. VEGF increases the length, area and branch point number of induced vessels whereas HGF mediates exclusively vascular area growth resulting in vascular structures of enlarged diameter. Moreover, the combination of both cytokines results in an additive increase of vascular diameter.  相似文献   

5.
Light-and electron-microscopic autoradiography have been used to study fibroblast transformation into endothelial cells in the formation of new blood vessels during wound healing in rabbit ear chambers. When cultured fibroblasts labeled with tritium thymidine were transplanted autologously into the chambers, newly formed blood vessels contained endothelial cells labeled with tritium thymidine. This result suggests that fibroblasts play a pivotal role in angiogenesis, as progenitors of endothelial cells in newly formed blood vessels.  相似文献   

6.
Postnatal vasculogenesis   总被引:7,自引:0,他引:7  
It is generally accepted that vasculogenesis is limited to early embryogenesis and is believed not to occur in adult, whereas angiogenesis occurs in both the developing embryo and postnatal life. However, the distinction between them is not absolute, because both require endothelial cell proliferation and migration and three-dimensional reorganization of newly formed blood vessels, nor are they mutually exclusive, inasmuch as angioblasts can be incorporated into expanding pre-existing blood vessels. Recent observations indicate that vasculogenesis may not be restricted to early embryogenesis, but may also have a physiological role or contribute to the pathology of vascular diseases in adults. The major evidence in favor of this new view comes from: (i) demonstration of the presence of circulating endothelial cells and endothelial precursor cells; (ii) newly described mechanisms of blood vessel formation in tumor growth. The potential biomedical applications of endothelial precursor cells and the new opportunities for the development of new forms of tumor-targeted treatments are discussed.  相似文献   

7.
Endothelial precursor cells respond to molecular cues to migrate and assemble into embryonic blood vessels, but the signaling pathways involved in vascular patterning are not well understood. We recently showed that avian vascular patterning cues are recognized by mammalian angioblasts derived from somitic mesoderm through analysis of mouse-avian chimeras. To determine whether stem cell-derived endothelial cells/progenitors also recognize global patterning signals, murine ES cell-derived embryoid bodies (EBs) were grafted into avian hosts. ES cell-derived murine endothelial cells/progenitors migrated extensively and colonized the appropriate host vascular beds. They also formed mosaic vessels with avian endothelial cells. Unlike somite derived-endothelial cells, ES cell-derived endothelial cells/progenitors migrated across the host embryonic midline to the contralateral side. To determine the role of VEGF signaling in embryonic vascular patterning, EBs mutant for a VEGF receptor (flk-1(-/-)) or a signal (VEGF-A(-/-)) were grafted into quail hosts. Flk-1(-/-) EB grafts produced only rare endothelial cells that did not migrate or assemble into vessels. In contrast, VEGF-A(-/-) EB grafts produced endothelial cells that resembled wild-type and colonized host vascular beds, suggesting that host-derived signals can partially rescue mutant graft vascular patterning. VEGF-A(-/-) graft endothelial cells/progenitors crossed the host midline with much lower frequency than wild-type EB grafts, indicating that graft-derived VEGF compromised the midline barrier when present. Thus, ES cell-derived endothelial cells/progenitors respond appropriately to global vascular patterning cues, and they require the VEGF signaling pathway to pattern properly. Moreover, EB-avian chimeras provide an efficient way to screen mutations for vascular patterning defects.  相似文献   

8.
The principal aim of this study was to investigate short- and long-term effects of clinorotation on human endothelial cells (EA hy 926 cell line) using a three-dimensional random positioning machine. Moreover, the impact of vascular endothelial growth factor (VEGF) was addressed. Immediately, within one hour and after four and twenty-four hours an increase of apoptotic cells was detected. VEGF significantly inhibited the amount of apoptotic endothelial cells (EC). VEGF reduced the amount of fas-positive EC. Moreover, after 24 hours, proliferating EC grew in form of three-dimensional multicellular spheroids and also as monolayers. The initially formed spheroids (maximum diameter 3 mm) remained stable up to the 15th day of clinorotation. Some spheroids revealed tubular structures. In addition, a clear increase of extracellular matrix proteins such as osteopontin and fibronectin was measured. The three-dimensional clinostat represents an important tool for cell biological experiments. VEGF significantly attenuated the changes of endothelial cells induced by simulated weightlessness in a cell protective manner.  相似文献   

9.
Vasculogenesis in embryonic hearts proceeds by formation of aggregates consisting of erythroblasts and endothelial cells. These aggregates are called blood-islands or blood-island-like structures. We aimed to characterize blood islands in mouse embryonic hearts at stages spanning from 11 dpc through 13 dpc, i.e. prior to the establishment of the coronary circulation. Our observations suggested that there are two types of blood islands. One formed by migrating nucleated erythroblasts, which associated with migrating endothelial cell and the second by in situ emergence of two kinds of cells belonging to separate populations: one resembling an erythroblast progenitor and the second resembling an endothelial-cell progenitor. The subepicardial blood islands contain nucleated erythroblasts, undifferentiated mesenchymal cells, platelets, and early lymphocytes. The subepicardial blood islands resemble vesicles with protruding prongs directed toward the myocardium. Ahead of the prongs, angiogenic sprouting and degradation of fibronectin is observed. Vesicles gradually change their shape from spherical to tubular at 13 dpc and grow and extend along the interventricular sulcuses forming vascular tubes. We presume that the vascular tubes located within the interventricular sulcuses are precursors of coronary veins. Our data seems to indicate that embryonic heart vasculogenesis is accompanied by hematopoiesis  相似文献   

10.
Formation of embryonic vasculature involves vasculogenesis as endothelial cells differentiate and aggregate into vascular cords and angiogenesis which includes branching from the existing vessels. In the zebrafish which has emerged as an advantageous model to study vasculogenesis, cranial vasculature is thought to originate by a combination of vasculogenesis and angiogenesis, but how these processes are coordinated is not well understood. To determine how angioblasts assemble into cranial vasculature, we generated an etsrp:GFP transgenic line in which GFP reporter is expressed under the promoter control of an early regulator of vascular and myeloid development, etsrp/etv2. By utilizing time-lapse imaging we show that cranial vessels originate by angiogenesis from angioblast clusters, which themselves form by the mechanism of vasculogenesis. The two major pairs of bilateral clusters include the rostral organizing center (ROC) which gives rise to the most rostral cranial vessels and the midbrain organizing center (MOC) which gives rise to the posterior cranial vessels and to the myeloid and endocardial lineages. In Etsrp knockdown embryos initial cranial vasculogenesis proceeds normally but endothelial and myeloid progenitors fail to initiate differentiation, migration and angiogenesis. Such angioblast cluster-derived angiogenesis is likely to be involved during vasculature formation in other vertebrate systems as well.  相似文献   

11.
The neovascularization of tissues is accomplished by two distinct processes: de novo formation of blood vessels through the assembly of progenitor cells during early prenatal development (vasculogenesis), and expansion of a pre-existing vascular network by endothelial cell sprouting (angiogenesis), the main mechanism of blood vessel growth in postnatal life. Evidence exists that adult bone marrow (BM)-derived progenitor cells can contribute to the formation of new vessels by their incorporation into sites of active angiogenesis. Aim of this study was to investigate the in vitro self-organizing capacity of human BM mononuclear cells (BMMNC) to induce vascular morphogenesis in a three-dimensional (3D) matrix environment in the absence of pre-existing vessels. Whole BMMNC as well as the adherent and non-adherent fractions of BMMNC were embedded in fibrin gels and cultured for 3-4 weeks without additional growth factors. The expression of hematopoietic-, endothelial-, smooth muscle lineage, and stem cell markers was analyzed by immunohistochemistry and confocal laser-scanning microscopy. The culture of unselected BMMNC in 3D fibrin matrices led to the formation of cell clusters expressing the endothelial progenitor cell (EPC) markers CD133, CD34, vascular endothelial growth factor receptor (VEGFR)-2, and c-kit, with stellar shaped spreading of peripheral elongated cells forming tube-like structures with increasing complexity over time. Cluster formation was dependent on the presence of both adherent and non-adherent BMMNC without the requirement of external growth factors. Developed vascular structures expressed the endothelial markers CD34, VEGFR-2, CD31, von Willebrand Factor (vWF), and podocalyxin, showed basement-membrane-lined lumina containing CD45+ cells and were surrounded by alpha-smooth muscle actin (SMA) expressing mural cells. Our data demonstrate that adult human BM progenitor cells can induce a dynamic self organization process to create vascular structures within avascular 3D fibrin matrices suggesting a possible alternative mechanism of adult vascular development without involvement of pre-existing vascular structures.  相似文献   

12.
The embryonic cardiac outflow myocardium originates from a secondary heart-forming field to connect the developing ventricles with the aortic sac. The outflow tract (OFT) subsequently undergoes complex remodeling in the transition of the embryo to a dual circulation. In avians, elimination of OFT cardiomyocytes by apoptosis (stages 25-32) precedes coronary vasculogenesis and is necessary for the shortening of the OFT and the posterior rotation of the aorta. We hypothesized that regional myocardial hypoxia triggers OFT remodeling. We used immunohistochemical detection of the nitroimidazole EF5, administered by intravascular infusion in ovo, as an indicator of relative tissue oxygen concentrations. EF5 binding was increased in the OFT myocardium relative to other myocardium during these stages (25-32) of OFT remodeling. The intensity of EF5 binding paralleled the prevalence of apoptosis in the OFT myocardium, which are first detected at stage 25, maximal at stage 30, and diminished by stage 32. Evidence of coincident hypoxia-dependent responses included the expression of the vascular endothelial growth factor (VEGF) receptor 2 by the OFT myocardium, the predominant expression of VEGF122 (diffusible) isoform in the OFT, and the recruitment of QH1-positive pro-endothelial cells to the OFT and vasculogenesis. Exposure of embryos to hyperoxia (95% O(2)/5% CO(2)) during this developmental window reduced the prevalence of cardiomyocyte apoptosis and attenuated the shortening and rotation of the OFT, resulting in double-outlet right ventricle morphology, similar to that observed when apoptosis is directly inhibited. These results suggest that regional myocardial hypoxia triggers cardiomyocyte apoptosis and remodeling of the OFT in the transition to a dual circulation, and that VEGF autocrine/paracrine signaling may regulate these processes.  相似文献   

13.
Blood vessels and neurons share several types of guidance cues and cell surface receptors to control their behaviour during embryogenesis. The transmembrane protein NRP1 is present on blood vessels and nerves. NRP1 binds two structurally diverse ligands, the semaphorin SEMA3A and the VEGF164 isoform of vascular endothelial growth factor. SEMA3A was originally identified as a repulsive cue for developing axons that acts by signalling through receptor complexes containing NRP1 and plexins. In vitro, SEMA3A also inhibits integrin function and competes with VEGF164 for binding to NRP1 to modulate the migration of endothelial cells. These observations resulted in a widely accepted model of vascular patterning in which the balance of VEGF164 and SEMA3A determines endothelial cell behaviour. However, we now demonstrate that SEMA3A is not required for angiogenesis in the mouse, which instead is controlled by VEGF164. We find that SEMA3A, but not VEGF164, is required for axon patterning of limb nerves, even though the competition between VEGF164 and SEMA3A for NRP1 affects the migration of neuronal progenitor cells in vitro and has been hypothesised to control axon guidance. Moreover, we show that there is no genetic interaction between SEMA3A and VEGF164 during vasculogenesis, angiogenesis or limb axon patterning, suggesting that ligand competition for NRP1 binding cannot explain neurovascular congruence, as previously suggested. We conclude that NRP1 contributes to both neuronal and vascular patterning by preferentially relaying SEMA3A signals in peripheral axons and VEGF164 signals in blood vessels.  相似文献   

14.
The aim of the present study was to determine whether angiogenic cytokines, which induce neovascularization in the blood vascular system, might also be operative in the lymphatic system. In an assay of spontaneous in vitro angiogenesis, endothelial cells isolated from bovine lymphatic vessels retained their histotypic morphogenetic properties by forming capillary-like tubes. In a second assay, in which endothelial cells could be induced to invade a three-dimensional collagen gel within which they formed tube-like structures, lymphatic endothelial cells responded to basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) in a manner similar to what has previously been observed with endothelial cells derived from the blood vascular system. Finally, since angiogenesis is believed to require extracellular proteolytic activity, we investigated the effects of bFGF and VEGF on lymphatic endothelial cell proteolytic properties by focussing on the plasminogen activator (PA) system. bFGF and VEGF increased urokinase, urokinase receptor, and tissue-type PA expression. This was accompanied by an increase in PA inhibitor-l, which is thought to play an important permissive role in angiogenesis by protecting the extracellular matrix against excessive proteolytic degradation. Taken together, these results demonstrate that with respect to in vitro morphogenetic and proteolytic properties, lymphatic endothelial cells respond to the previously described angiogenic factors, bFGF and VEGF, in a manner very similar to what has been described for endothelial cells derived from the blood vascular system.  相似文献   

15.
The avian embryo is well suited for the study of blood vessel morphogenesis. This is especially true of investigations that focus on the de novo formation of blood vessels from mesoderm, a process referred to as vasculogenesis. To examine the cellular and molecular mechanisms regulating vasculogenesis, we developed a bioassay that employs intact avian embryos. Among the many bioactive molecules we have examined, vascular epithelial growth factor (VEGF) stands out for its ability to affect vasculogenesis. Using the whole-embryo assay, we discovered that VEGF induces a vascular malformation we refer to as hyperfusion. Our studies showed that microinjection of recombinant VEGF165 converted the normally discrete network of embryonic blood vessels into enlarged endothelial sinuses. Depending on the amount of VEGF injected and the time of postinjection incubation, the misbehavior of the primordial endothelial cells can become so exaggerated that for all practical purposes the embryo contains a single enormous vascular sinus; all normal vessels are subsumed into a composite vascular structure. This morphology is reminiscent of the abnormal vascular sinuses characteristic of certain neovascular pathologies. (J Histochem Cytochem 47:1351-1355, 1999)  相似文献   

16.
Adult 'endothelial progenitor cells'. Renewing vasculature   总被引:15,自引:0,他引:15  
During embryogenesis, endothelial progenitor cells participate in the initial processes of primitive blood vessel formation (vasculogenesis). It has become evident that progenitors to vascular endothelial cells also exist in the adult. Endothelial progenitors normally reside in the adult bone marrow but may become mobilized into circulation by cytokine or angiogenic growth factor signals from the periphery, enter extravascular tissue, and promote de novo vessel formation by virtue of physically integrating into vessels and/or supplying growth factors (adult vasculogenesis). For that reason, autologous endothelial progenitors, mobilized in situ or transplanted, has become a major target of therapeutic revascularization approaches to ischemic disease and endothelial injury. Moreover, endothelial progenitors represent a potential target of strategies to block tumor growth.  相似文献   

17.
A Titin mutation defines roles for circulation in endothelial morphogenesis   总被引:2,自引:0,他引:2  
Morphogenesis of the developing vascular network requires coordinated regulation of an extensive array of endothelial cell behaviors. Precisely regulated signaling molecules such as vascular endothelial growth factor (VEGF) direct some of these endothelial behaviors. Newly forming blood vessels also become subjected to novel biomechanical forces upon initiation of cardiac contractions. We report here the identification of a recessive mouse mutation termed shrunken-head (shru) that disrupts function of the Titin gene. Titin was found to be required for the initiation of proper heart contractions as well as for maintaining the correct overall shape and orientation of individual cardiomyocytes. Cardiac dysfunction in shrunken-head mutant embryos provided an opportunity to study the effects of lack of blood circulation on the morphogenesis of endothelial cells. Without blood flow, differentiating endothelial cells display defects in their shapes and patterns of cell-cell contact. These endothelial cells, without exposure to blood circulation, have an abnormal distribution within vasculogenic vessels. Further effects of absent blood flow include abnormal spatial regulation of angiogenesis and elevated VEGF signaling. The shrunken-head mutation has provided an in vivo model to precisely define the roles of circulation on cellular and network aspects of vascular morphogenesis.  相似文献   

18.
Two mechanisms account for the formation of blood vessels, vasculogenesis and angiogenesis. Unfortunately, the terms vasculogenesis and angiogenesis literally have the same meaning, i.e., the genesis of blood vessels, and thus do little to distinguish between the two processes. Despite the nomenclature, the two processes are clearly distinct. Vasculogenesis, the de novo formation of blood vessels from mesoderm, is driven by the recruitment of undifferentiated mesodermal cells to the endothelial lineage and the de novo assembly of such cells into blood vessels. Angiogenesis is the generation of new blood vessels from endothelial cells of existing blood vessels, a process driven by endothelial cell proliferation. Recent years have seen dramatic changes in our understanding of the process of vasculogenesis, expanding the scope of its occurrence beyond the earliest stages of development to include involvement in neovascular processes throughout development as well as in the adult. In this review, emphasis is placed on discussion of emerging perspectives on the process of vasculogenesis in both the embryo and the adult.  相似文献   

19.
In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号