首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Lamins are major proteins of the nuclear envelope that are members of the intermediate filament protein family. In vertebrates, nuclei from differentiated tissues usually contain both lamins of the A and B subtypes, while embryonic tissues contain the B-type lamin only. We have examined the composition of the nuclear lamina in human B and T lymphocytes representative of distinct stages of lymphoid differentiation. We show here that, in both cell lineages, while lamin B is constitutively expressed at all stages of differentiation, A-type lamin expression is restricted to later developmental stages.  相似文献   

3.
Invertebrate lamins   总被引:1,自引:0,他引:1  
  相似文献   

4.
The nuclear lamina is an important determinant of nuclear architecture. Mutations in A-type but not B-type lamins cause a range of human genetic disorders, including muscular dystrophy. Dominant mutations in nuclear lamin proteins have been shown to disrupt a preformed lamina structure in Xenopus egg extracts. Here, a series of deletion mutations in lamins A and B1 were evaluated for their ability to disrupt lamina structure in Chinese hamster ovary cells. Deletions of either the lamin A "head" domain or the C-terminal CaaX domain formed intranuclear aggregates and resulted in the disruption of endogenous lamins A/C but not lamins B1/B2. By contrast, "head-less" lamin B1 localized to the nuclear rim with no detectable effect on endogenous lamins, whereas lamin B1 CaaX domain deletions formed intranuclear aggregates, disrupting endogenous lamins A/C but not lamins B1/B2. Filter binding assays revealed that a head/CaaX domain lamin B1 mutant interacted much more strongly with lamins A/C than with lamins B1/B2. Regulated induction of this mutant in stable cell lines resulted in the rapid elimination of all detectable lamin A protein, whereas lamin C was trapped in a soluble form within the intranuclear aggregates. In contrast to results in Xenopus egg extracts, dominant negative lamin B1 (but not lamin A) mutants trapped replication proteins involved in both the initiation and elongation phases of replication but did not effect cellular growth rates or the assembly of active replication centers. We conclude that elimination of the CaaX domain in lamin B1 and elimination of either the CaaX or head domain in lamin A constitute dominant mutations that can disrupt A-type but not B-type lamins, highlighting important differences in the way that A- and B-type lamins are integrated into the lamina.  相似文献   

5.
In the past decade, a wide range of fascinating monogenic diseases have been linked to mutations in the LMNA gene, which encodes the A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. These diseases include dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial lipodystrophy, a Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and Hutchinson-Gilford progeria syndrome. Several diseases are also caused by mutations in genes encoding B-type lamins and proteins that associate with the nuclear lamina. Studies of these so-called laminopathies or nuclear envelopathies, some of which phenocopy common human disorders, are providing clues about functions of the nuclear envelope and insights into disease pathogenesis and human aging.Mutations in LMNA encoding the A-type lamins cause a group of human disorders often collectively called laminopathies. The major A-type lamins, lamin A and lamin C, arise by alternative splicing of the LMNA pre-mRNA and are expressed in virtually all differentiated somatic cells. Although the A-type lamins are widely expressed, LMNA mutations are responsible for at least a dozen different clinically defined disorders with tissue-selective abnormalities. Mutations in genes encoding B-type lamins and lamin-associated proteins, most of which are similarly expressed in almost all somatic cells, also cause tissue-selective diseases.Research on the laminopathies has provided novel clues about nuclear envelope function. Recent studies have begun to shed light on how alterations in the nuclear envelope could explain disease pathogenesis. Along with basic research on nuclear structure, the nuclear lamins, and lamina-associated proteins, clinical research on the laminopathies will contribute to a complete understanding of the functions of the nuclear envelope in normal physiology and in human pathology.  相似文献   

6.
Integral proteins of the nuclear envelope inner membrane have been proposed to reach their sites by diffusion after their co-translational insertion in the rough endoplasmic reticulum. They are then retained in the inner nuclear membrane by binding to nuclear structures. One such structure is the nuclear lamina, an intermediate filament meshwork composed of A-type and B-type lamin proteins. Emerin, MAN1, and LBR are three integral inner nuclear membrane proteins. We expressed these proteins fused to green fluorescent protein in embryonic fibroblasts from wild-type mice and Lmna -/- mice, which lack A-type lamins. We then studied the diffusional mobilities of emerin, MAN1, and LBR using fluorescence recovery after photobleaching. We show that emerin and MAN1, but not LBR, are more mobile in the inner nuclear membrane of cells from Lmna -/- mice than in cells from wild-type mice. In cells from Lmna -/- mice expressing exogenous lamin A, the protein mobilities were similar to those in cells from wild-type mice. This supports a model where emerin and MAN1 are at least partly retained in the inner nuclear membrane by binding to A-type lamins, while LBR depends on other binding partners for its retention.  相似文献   

7.
The nuclear lamina is the karyoskeletal structure, intimately associated with the nuclear envelope, that is widespread among the diverse types of eukaryotic cells. A family of proteins, termed lamins, has been shown to be a prominent component of this lamina, and various members of this family are differentially expressed in different cell types. In mammals, three major lamins (A, B, C) have been identified, and in all cells so far examined lamin B is constitutively expressed while lamins A and C are not, suggesting that lamin B is sufficient to form a functional lamina. Because of this key importance of lamin B, cDNA clones encoding mammalian lamin B were isolated by screening murine cDNA libraries, representing F9 teratocarcinoma cells and fetal liver, with the corresponding cDNA probe of lamin LI of Xenopus laevis. The nucleotide sequence of the murine lamin B mRNA (approximately 2.9 kb) was determined. The deduced amino acid sequence of the encoded polypeptide (587 amino acids; mol. wt. 66760) is highly homologous to X. laevis lamin LI (72.9% identical residues) but displays lower similarity to A-type lamins (53.8% identical amino acid residues with human lamin A). Lamin B also conforms to the general molecular organization principle of the members of the intermediate filament (IF) protein family, i.e., an extended alpha-helical rod domain that is interrupted by two non alpha-helical linkers and flanked by non-alpha-helical head (amino-terminal) and tail (carboxy-terminal) domains. The tail domain, which does not reveal a hydrophobic region of considerable length, contains a typical karyophilic signal sequence and an uninterrupted stretch of eight negatively charged amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Nuclear intermediate filament proteins, called lamins, form a meshwork that lines the inner surface of the nuclear envelope. Lamins contain three domains: an N-terminal head, a central rod and a C-terminal tail domain possessing an Ig-fold structural motif. Lamins are classified as either A- or B-type based on structure and expression pattern. The Drosophila genome possesses two genes encoding lamins, Lamin C and lamin Dm0, which have been designated A- and B-type, respectively, based on their expression profile and structural features. In humans, mutations in the gene encoding A-type lamins are associated with a spectrum of predominantly tissue-specific diseases known as laminopathies. Linking the disease phenotypes to cellular functions of lamins has been a major challenge. Drosophila is being used as a model system to identify the roles of lamins in development. Towards this end, we performed a comparative study of Drosophila and human A-type lamins. Analysis of transgenic flies showed that human lamins localize predictably within the Drosophila nucleus. Consistent with this finding, yeast two-hybrid data demonstrated conservation of partner-protein interactions. Drosophila lacking A-type lamin show nuclear envelope defects similar to those observed with human laminopathies. Expression of mutant forms of the A-type Drosophila lamin modeled after human disease-causing amino acid substitutions revealed an essential role for the N-terminal head and the Ig-fold in larval muscle tissue. This tissue-restricted sensitivity suggests a conserved role for lamins in muscle biology. In conclusion, we show that (1) localization of A-type lamins and protein-partner interactions are conserved between Drosophila and humans, (2) loss of the Drosophila A-type lamin causes nuclear defects and (3) muscle tissue is sensitive to the expression of mutant forms of A-type lamin modeled after those causing disease in humans. These studies provide new insights on the role of lamins in nuclear biology and support Drosophila as a model for studies of human laminopathies involving muscle dysfunction.  相似文献   

9.
The nuclear lamina is a meshwork of intermediate-type filament proteins (lamins) that lines the inner nuclear membrane. The lamina is proposed to be an important determinant of nuclear structure, but there has been little direct testing of this idea. To investigate lamina functions, we have characterized a novel lamin B1 mutant lacking the middle approximately 4/5 of its alpha-helical rod domain. Though retaining only 10 heptads of the rod, this mutant assembles into intermediate filament-like structures in vitro. When expressed in cultured cells, it concentrates in patches at the nuclear envelope. Concurrently, endogenous lamins shift from a uniform to a patchy distribution and lose their complete colocalization, and nuclei become highly lobulated. In vitro binding studies suggest that the internal rod region is important for heterotypic associations of lamin B1, which in turn are required for proper organization of the lamina. Accompanying the changes in lamina structure induced by expression of the mutant, nuclear pore complexes and integral membrane proteins of the inner membrane cluster, principally at the patches of endogenous lamins. Considered together, these data indicate that lamins play a major role in organizing other proteins in the nuclear envelope and in determining nuclear shape.  相似文献   

10.
Lamins are intermediate filament proteins of type V constituting a nuclear lamina or filamentous meshwork which lines the nucleoplasmic side of the inner nuclear membrane. This protein mesh provides a supporting scaffold for the nuclear envelope and tethers interphase chromosome to the nuclear periphery. Mutations of mainly A-type lamins are found to be causative for at least 11 human diseases collectively termed as laminopathies majority of which are characterised by aberrant nuclei with altered structural rigidity, deformability and poor mechanotransduction behaviour. But the investigation of viscoelastic behavior of lamin A continues to elude the field. In order to address this problem, we hereby present the very first report on viscoelastic properties of wild type human lamin A and some of its mutants linked with Dilated cardiomyopathy (DCM) using quantitative rheological measurements. We observed a dramatic strain-softening effect on lamin A network as an outcome of the strain amplitude sweep measurements which could arise from the large compliance of the quasi-cross-links in the network or that of the lamin A rods. In addition, the drastic stiffening of the differential elastic moduli on superposition of rotational and oscillatory shear stress reflect the increase in the stiffness of the laterally associated lamin A rods. These findings present a preliminary insight into distinct biomechanical properties of wild type lamin A protein and its mutants which in turn revealed interesting differences.  相似文献   

11.
M Peter  J Nakagawa  M Dorée  J C Labbé  E A Nigg 《Cell》1990,61(4):591-602
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. Phosphorylation of lamin proteins is believed to cause lamina disassembly during meiotic and mitotic M phase, but the M phase-specific lamin kinase has not been identified. Here we show that the cdc2 kinase, a major element implicated in controlling the eukaryotic cell cycle, phosphorylates chicken B-type lamins in vitro on sites that are specifically phosphorylated during M phase in vivo. Concomitantly, cdc2 kinase is capable of inducing lamina depolymerization upon incubation with isolated nuclei. One of the target sites of cdc2 kinase is identified as a motif (SPTR) conserved in the N-terminal domain of all lamin proteins. These results lead us to propose that mitotic disassembly of the nuclear lamina results from direct phosphorylation of lamins by cdc2 kinase.  相似文献   

12.
Lamins are intermediate filament proteins that make up the nuclear lamina, a matrix underlying the nuclear membrane in all metazoan cells that is important for nuclear form and function. Vertebrate A-type lamins are expressed in differentiating cells, while B-type lamins are expressed ubiquitously. Drosophila has two lamin genes that are expressed in A- and B-type patterns, and it is assumed that similarly expressed lamins perform similar functions. However, Drosophila and vertebrate lamins are not orthologous, and their expression patterns evolved independently. It is therefore of interest to examine the effects of mutations in lamin genes. Mutations in the mammalian lamin A/C gene cause a range of diseases, collectively called laminopathies, that include muscular dystrophies and premature aging disorders. We compared the sequences of lamin genes from different species, and we have characterized larval and adult phenotypes in Drosophila bearing mutations in the lam gene that is expressed in the B-type pattern. Larvae move less and show subtle muscle defects, and surviving lam adults are flightless and walk like aged wild-type flies, suggesting that lam phenotypes might result from neuromuscular defects, premature aging, or both. The resemblance of Drosophila lam phenotypes to human laminopathies suggests that some lamin functions may be performed by differently expressed genes in flies and mammals. Such still-unknown functions thus would not be dependent on lamin gene expression pattern, suggesting the presence of other lamin functions that are expression dependent. Our results illustrate a complex interplay between lamin gene expression and function through evolution.  相似文献   

13.
The nuclear lamina and inherited disease   总被引:9,自引:0,他引:9  
Inherited disorders of the nuclear lamina present some of the most intriguing puzzles in cell biology. Mutations in lamin A and lamin C – nuclear intermediate filament proteins that are expressed in nearly all somatic cells – cause tissue-specific diseases that affect striated muscle, adipose tissue and peripheral nerve or skeletal development. Recent studies provide clues about how different mutations in these proteins cause either muscle disease or partial lipodystrophy. Although the precise pathogenic mechanisms are currently unknown, the involvement of lamins in several different disorders shows that research on the nuclear lamina will shed light on common human pathologies.  相似文献   

14.
The nuclear lamina is a protein meshwork that lines the nuclear envelope in metazoan cells. It is composed largely of a polymeric assembly of lamins, which comprise a distinct sequence homology class of the intermediate filament protein family. On the basis of its structural properties, the lamina originally was proposed to provide scaffolding for the nuclear envelope and to promote anchoring of chromatin and nuclear pore complexes at the nuclear surface. This viewpoint has expanded greatly during the past 25 years, with a host of surprising new insights on lamina structure, molecular composition and functional attributes. It has been established that the self-assembly properties of lamins are very similar to those of cytoplasmic intermediate filament proteins, and that the lamin polymer is physically associated with components of the cytoplasmic cytoskeleton and with a multitude of chromatin and inner nuclear membrane proteins. Cumulative evidence points to an important role for the lamina in regulating signaling and gene activity, and in mechanically coupling the cytoplasmic cytoskeleton to the nucleus. The significance of the lamina has been vaulted to the forefront by the discovery that mutations in lamins and lamina-associated polypeptides lead to an array of human diseases. A key future challenge is to understand how the lamina integrates pathways for mechanics and signaling at the molecular level. Understanding the structure of the lamina from the atomic to supramolecular levels will be essential for achieving this goal.  相似文献   

15.
16.
Nuclear intermediate filaments (IFs) are made from fibrous proteins termed lamins that assemble, in association with several transmembrane proteins of the inner nuclear membrane and an unknown number of chromatin proteins, into a filamentous scaffold called the nuclear lamina. In man, three types of lamins with significant sequence identity, i.e. lamin A/C, lamin B1 and B2, are expressed. The molecular characteristics of the filaments they form and the details of the assembly mechanism are still largely unknown. Here we report the crystal structure of the coiled-coil dimer from the second half of coil 2 from human lamin A at 2.2A resolution. Comparison to the recently solved structure of the homologous segment of human vimentin reveals a similar overall structure but a different distribution of charged residues and a different pattern of intra- and interhelical salt bridges. These features may explain, at least in part, the differences observed between the lamin and vimentin assembly pathways. Employing a modeled lamin A coil 1A dimer, we propose that the head-to-tail association of two lamin dimers involves strong electrostatic attractions of distinct clusters of negative charge located on the opposite ends of the rod domain with arginine clusters in the head domain and the first segment of the tail domain. Moreover, lamin A mutations, including several in coil 2B, have been associated with human laminopathies. Based on our data most of these mutations are unlikely to alter the structure of the dimer but may affect essential molecular interactions occurring in later stages of filament assembly and lamina formation.  相似文献   

17.
The nuclear lamina, which provides a structural scaffolding for the nuclear envelope, consists largely of a polymer of the intermediate filament lamin proteins. Although different cell types contain distinctive relative amounts of the major lamin subtypes (A, C, B1, and B2), the functions of this variation are not understood. We have investigated the possibility that subtype variation affects lamina stability. We find that homotypic and heterotypic binding interactions of lamin B2 are substantially less resistant to chemical dissociation in vitro than those between the other lamin subtypes, whereas lamin A interactions are the most stable. Surprisingly, removal of the central four-fifths of the rod domain did not substantially weaken the interactions of lamins A and B2, suggesting that other regions also strongly contribute to their binding interactions. In contrast, this rod deletion strongly destabilizes the binding interactions of lamins B1 and C. Consistent with the binding studies, lamins are more readily solubilized by chemical extraction from cells enriched for lamin B2 than from cells enriched for lamin A. This suggests that the distinctive ensemble of heterotypic lamin interactions in a particular cell type affects the stability of the lamin polymer, and, correspondingly, could be relevant to tissue-specific properties of the lamina including its involvement in disease.  相似文献   

18.
Although activated caspase 6 is capable of cleaving both A- and B-type lamins during apoptosis, the higher-order structure of the nuclear lamina may cause a differential breakdown of these two types of lamins. In order to obtain a better understanding of the dynamics and the consequences of the rapid, coordinated breakdown of the lamina complex, we applied the green fluorescent protein (GFP) technology in living cells, in which the fate of individual caspase cleavage fragments of A- and B-type lamins was examined. CHO-K1 cells were stably transfected with cDNA constructs encoding N-terminally GFP-labelled hybrids of lamin A, lamin Adelta10, lamin C or lamin B1. The course of the apoptotic process, induced by the kinase inhibitor staurosporine or by the proteasome inhibitor MG132, was monitored by digital imaging microscopy or confocal microscopy. Time-lapse recordings showed that parallel to DNA condensation N-terminally GFP-tagged A-type lamins became diffusely dispersed throughout the nucleoplasm and rapidly translocated to the cytoplasm. In contrast, the majority of GFP-lamin B1 signal remained localised at the nuclear periphery, even after extensive DNA condensation. Comparison of lamin B1-GFP signal with A-type lamin antibody staining in the same apoptotic cells confirmed the temporal differences between A- and B-type lamina dispersal. Immunoblotting revealed only a partial cleavage of A-type lamins and an almost complete cleavage of lamin B1 during apoptosis. In contrast to lamin B1 in normal cells, this cleaved lamin B1, which is apparently still associated with the nuclear membrane, can be completely extracted by methanol or ethanol. Fluorescence loss of intensity after photobleaching experiments showed that in apoptotic cells A-type lamin-GFP molecules diffuse almost freely in both nucleoplasm and cytoplasm, while the lamin B1-GFP fragments remain more stably associated with the nuclear membrane, which is confirmed by co-localisation immunofluorescence studies with a nucleoporin p62 antibody. Our results therefore clearly show a differential behaviour of A- and B-type lamins during apoptosis, suggesting not only distinct differences in the organisation of the lamina filaments, but also that caspase cleavage of only a small fraction of A-type lamins is needed for its complete disintegration.  相似文献   

19.
The lamins are nuclear intermediate filament-type proteins forming the nuclear lamina meshwork at the inner nuclear membrane as well as complexes in the nucleoplasm. The recent discoveries that mutated A-type lamins and lamin-binding nuclear membrane proteins can be linked to numerous rare human diseases (laminopathies) affecting a multitude of tissues has changed the cell biologist’s view of lamins as mere structural nuclear scaffold proteins. It is still unclear how mutations in these ubiquitously expressed proteins give rise to tissue-restricted pathological phenotypes. Potential disease models include mutation-caused defects in lamin structure and stability, the deregulation of gene expression, and impaired cell cycle control. This review brings together various previously proposed ideas and suggests a novel, more general, disease model based on an impairment of adult stem cell function and thus compromised tissue regeneration in laminopathic diseases.  相似文献   

20.
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) and mediate bidirectional nucleocytoplasmic transport. Their spatial distribution in the NE is organized by the nuclear lamina, a meshwork of nuclear intermediate filament proteins. Major constituents of the nuclear lamina are A- and B-type lamins. In this work we show that the nuclear pore protein Nup88 binds lamin A in vitro and in vivo. The interaction is mediated by the N-terminus of Nup88, and Nup88 specifically binds the tail domain of lamin A but not of lamins B1 and B2. Expression of green fluorescent protein-tagged lamin A in cells causes a masking of binding sites for Nup88 antibodies in immunofluorescence assays, supporting the interaction of lamin A with Nup88 in a cellular context. The epitope masking disappears in cells expressing mutants of lamin A that are associated with laminopathic diseases. Consistently, an interaction of Nup88 with these mutants is disrupted in vitro. Immunoelectron microscopy using Xenopus laevis oocyte nuclei further revealed that Nup88 localizes to the cytoplasmic and nuclear face of the NPC. Together our data suggest that a pool of Nup88 on the nuclear side of the NPC provides a novel, unexpected binding site for nuclear lamin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号