首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genotoxic stress induces alternative splicing of the oncogene MDM2 generating MDM2-ALT1, an isoform attributed with tumorigenic properties. However, the mechanisms underlying this event remain unclear. Here we explore MDM2 splicing regulation by utilizing a novel minigene that mimics endogenous MDM2 splicing in response to UV and cisplatinum-induced DNA damage. We report that exon 11 is necessary and sufficient for the damage-specific alternative splicing of the MDM2 minigene and that the splicing factor SRSF1 binds exon 11 at evolutionarily conserved sites. Interestingly, mutations disrupting this interaction proved sufficient to abolish the stress-induced alternative splicing of the MDM2 minigene. Furthermore, SRSF1 overexpression promoted exclusion of exon 11, while its siRNA-mediated knockdown prevented the stress-induced alternative splicing of endogenous MDM2. Additionally, we observed elevated SRSF1 levels under stress and in tumors correlating with the expression of MDM2-ALT1. Notably, we demonstrate that MDM2-ALT1 splicing can be blocked by targeting SRSF1 sites on exon 11 using antisense oligonucleotides. These results present conclusive evidence supporting a negative role for SRSF1 in MDM2 alternative splicing. Importantly, we define for the first time, a clear-cut mechanism for the regulation of damage-induced MDM2 splicing and present potential strategies for manipulating MDM2 expression via splicing modulation.  相似文献   

2.
3.
Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high- scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (T)GCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis, (T)CTATC, is important for alternative splicing regulation of the unc-52 gene.  相似文献   

4.
Adenosine to inosine editing of mRNA from the human 5-HT2C receptor gene (HTR2C) occurs at five exonic positions (A–E) in a stable stem–loop that includes the normal 5′ splice site of intron 5 and is flanked by two alternative splice sites. Using in vitro editing, we identified a novel editing site (F) located in the intronic part of the stem–loop and demonstrated editing at this site in human brain. We have shown that in cell culture, base substitutions to mimic editing at different combinations of the six sites profoundly affect relative splicing at the normal and the upstream alternative splice site, but splicing at the downstream alternative splice site was consistently rare. Editing combinations in different splice variants from human brain were determined and are consistent with the effects of editing on splicing observed in cell culture. As RNA editing usually occurs close to exon/intron boundaries, this is likely to be a general phenomenon and suggests an important novel role for RNA editing.  相似文献   

5.
Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.Alternative pre-mRNA splicing is a mechanism for generating multiple mRNA isoforms from a single gene. This process can allow a gene to encode for more than one protein isoform. For some genes, it is a mechanism for regulating message stability through production of alternative mRNA isoforms that are substrates for the nonsense-mediated mRNA decay pathway (1). The majority of human genes undergo alternative splicing (2), and the process can be regulated in tissue-specific and developmental stage-specific manners. Current models propose that cis elements on the pre-mRNA, in exons and introns, serve as recognition sites for trans-acting protein factors that bind to the pre-mRNA and regulate assembly of the splicing machinery, thus regulating splice site choice (3).In recent years, a number of groups have employed bioinformatics techniques to identify cis splicing regulatory elements (4). These techniques include using multiple interspecies sequence alignments to identify conserved intronic regions, identification of short sequences in exons that are bounded by weak consensus splice sites, and identification of common intronic sequences flanking similarly regulated alternative exons (59). These efforts have added many new sequences to the list of known and potential splicing regulators. The identification of the protein factor partners for these sequences will be important for understanding their function in alternative splicing regulation.Experimental approaches have identified alternative splicing factors that interact with specific cis elements (10), but the number of trans factors discovered still lags behind the number of newly identified cis element partners. Some examples of well-characterized cis element/trans-acting factor interactions include the NOVA K homology domain splicing factor binding to the sequence UCAY (11), the FOX splicing factors binding to the sequence UGCAUG (1214), and hnRNP3 F/H proteins binding to the sequence GGGG (15, 16). By using cross-linking immunoprecipitation followed by large scale sequencing, entire catalogs of RNAs that the splicing factors NOVA, SF2/ASF, and FOX2 bind to in vivo have been determined (1719). These approaches have led to models for how the proteins binding to their cis regulatory elements may alter splicing. These models include a role for the relative position of a cis element to an alternative cassette exon in determining alternative exon inclusion or skipping (18, 19).In a previous bioinformatics analysis of evolutionarily conserved intronic sequences flanking alternatively spliced exons, we identified the hexamer sequence UCUAUC as a novel splicing regulatory element (8). UCUAUC is found flanking both sides of alternative exon 16 of the unc-52 gene of Caenorhabditis elegans. Genetic analysis of a class of viable unc-52 mutants led to the discovery that exons 16–18 are alternative cassette exons and that every combination of skipping and inclusion of these three exons occurs (20). This splicing is regulated by the alternative splicing factor MEC-8 (21). Fig. 1A shows a schematic diagram of the alternatively spliced region of unc-52, with the MEC-8-enhanced alternative splicing events indicated. Using an unc-52 splicing reporter trans gene containing alternative exons 15–19, we previously reported that alternative splicing is regulated by the intronic motif UCUAUC in the intron downstream of exon 16 (8). In addition we showed that this element works cooperatively with a UGCAUG hexamer (the consensus FOX-1-binding site) in the upstream intron to regulate alternative splicing (8).Open in a separate windowFIGURE 1.RNA affinity chromatography identifies HRP-2 as binding to UCUAUC elements. A, schematic representation of the alternatively spliced region of unc-52 (adapted from Ref. 21). The alternative splicing events promoted by MEC-8 are indicated by bold lines. The lines next to introns 15 and 16 are the sites of the UCUAUC elements in those introns whose sequences were used in the RNA affinity chromatography. B, table showing sequences of RNAs immobilized to beads in the RNA affinity chromatography experiment. C, Coomassie-stained SDS-PAGE analysis of RNA affinity chromatography. C. elegans embryo extract was incubated with the different immobilized RNA substrates listed on top of the gel. Proteins identified by mass spectrometry are listed to the right of the gel, with arrows pointing to coincident protein bands. D, the left panel shows the silver stain result for the RNA affinity chromatography experiment. Each lane represents a different immobilized substrate, as indicated above. The band corresponding to HRP-2 is indicated by an arrow. The right panel is an immunoblot of the same gel using anti-HRP-2 polyclonal antibody. E, anti-HRP-2 immunoblot of an RNA affinity chromatography experiment for the indicated substrates.In this study, we report the results of a biochemical identification of a protein factor from C. elegans that binds to the UCUAUC intronic splicing regulatory element. We transcribed different short RNA sequences containing the UCUAUC element in its native intronic context, or as part of a repeating unit, and immobilized these onto agarose beads. After passing embryo extracts across these beads, we found that the protein HRP-2, the C. elegans homolog of the mammalian hnRNP Q/R proteins, binds to this sequence with high affinity. By using RNAi to reduce the level of HRP-2 in worms, we observed changes in alternative splicing of unc-52 and lin-10, two genes that contain UCUAUC elements in introns flanking alternative exons. We propose that HRP-2 is an alternative splicing factor that works through the UCUAUC intronic elements to regulate alternative splicing.  相似文献   

6.
Aberrant alternative splicing of key cellular regulators may play a pivotal role in cancer development. To investigate the potential influence of altered alternative splicing on the development of transitional cell carcinoma (TCC), splicing activity in the TCC cell lines TSGH8301 and BFTC905 was examined using the SV40-immortalized uroepithelial cell line SV-HUC-1 as a reference. Our results indicate a significant alteration in splice site selection in the TCC cell lines. By gene expression profiling and subsequent validation, we discovered that sex-determining region Y-box protein 2 (SOX2) is specifically upregulated in BFTC905. Furthermore, ectopic expression of SOX2 modulates alternative splicing of the splicing reporter in vivo. More significantly, using an in vitro pull-down assay, it was found that SOX2 exhibits RNA-binding capability. Our observations suggest that SOX2 modulates alternative splicing by functioning as a splicing factor.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Alternative splicing regulates developmentally and tissue-specific gene expression programs, disruption of which have been implicated in numerous diseases. Muscleblind-like 1 (MBNL1) regulates splicing transitions, which are disrupted on loss of MBNL1 function in myotonic dystrophy type 1 (DM1). One such event is MBNL1-mediated activation of insulin receptor exon 11 inclusion, which requires an intronic enhancer element downstream of exon 11. The mechanism of MBNL1-mediated activation of exon inclusion is unknown. We developed an in vitro splicing assay, which robustly recapitulates MBNL1-mediated splicing activation of insulin receptor exon 11 and found that MBNL1 activates removal of the intron upstream of exon 11 upon binding its functional response element in the downstream intron. MBNL1 enhances early spliceosome assembly as evidenced by enhanced complex A formation and binding of U2 small nuclear ribonucleoprotein auxiliary factor 65 kDa subunit (U2AF65) on the upstream intron. We demonstrated that neither the 5′ splice site nor exon 11 sequences are required for MBNL1-activated U2AF65 binding. Interestingly, the 5′ splice site is required for MBNL1-mediated activation of upstream intron removal, although MBNL1 has no effect on U1 snRNA recruitment. These results suggest that MBNL1 directly activates binding of U2AF65 to enhance upstream intron removal to ultimately activate alternative exon inclusion.  相似文献   

14.
15.
16.
We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations.  相似文献   

17.
Regulation of glutamate receptor B pre-mRNA splicing by RNA editing   总被引:1,自引:0,他引:1  
RNA-editing enzymes of the ADAR family convert adenosines to inosines in double-stranded RNA substrates. Frequently, editing sites are defined by base-pairing of the editing site with a complementary intronic region. The glutamate receptor subunit B (GluR-B) pre-mRNA harbors two such exonic editing sites termed Q/R and R/G. Data from ADAR knockout mice and in vitro editing assays suggest an intimate connection between editing and splicing of GluR-B pre-mRNA.

By comparing the events at the Q/R and R/G sites, we can show that editing can both stimulate and repress splicing efficiency. The edited nucleotide, but not ADAR binding itself, is sufficient to exert this effect. The presence of an edited nucleotide at the R/G site reduces splicing efficiency of the adjacent intron facilitating alternative splicing events occurring downstream of the R/G site.

Lack of editing inhibits splicing at the Q/R site. Editing of both the Q/R nucleotide and an intronic editing hotspot are required to allow efficient splicing. Inefficient intron removal may ensure that only properly edited mRNAs become spliced and exported to the cytoplasm.

  相似文献   

18.
19.
The RAS/MEK/ERK genetic axis is commonly altered in rhabdomyosarcoma (RMS), indicating high activity of downstream effector ERK1/2 kinase. Previously, we have demonstrated that inhibition of the RAS/MEK/ERK signaling pathway in RMS is insufficient to induce cell death due to residual pro-survival MCL-1 activity. Here, we show that the combination of ERK1/2 inhibitor Ulixertinib and MCL-1 inhibitor S63845 is highly synergistic and induces apoptotic cell death in RMS in vitro and in vivo. Importantly, Ulixertinib/S63845 co-treatment suppresses long-term survival of RMS cells, induces rapid caspase activation and caspase-dependent apoptosis. Mechanistically, Ulixertinib-mediated upregulation of BIM and BMF in combination with MCL-1 inhibition by S63845 shifts the balance of BCL-2 proteins towards a pro-apoptotic state resulting in apoptosis induction. A genetic silencing approach reveals that BIM, BMF, BAK and BAX are all required for Ulixertinib/S63845-induced apoptosis. Overexpression of BCL-2 rescues cell death triggered by Ulixertinib/S63845 co-treatment, confirming that combined inhibition of ERK1/2 and MCL-1 effectively induces cell death of RMS cells via the intrinsic mitochondrial apoptotic pathway. Thus, this study is the first to demonstrate the cytotoxic potency of co-inhibition of ERK1/2 and MCL-1 for RMS treatment.  相似文献   

20.
Although mutations in the oncoprotein murine double minute 2 (MDM2) are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2), which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1), which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP) SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (?1494?G?>?A; indel 40?bp; and ?182?C?>?G). Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309). Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40?bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号