首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Selvarajoo K 《FEBS letters》2006,580(5):1457-1464
To understand differential time activation of nuclear factor kappaB (NF-kappaB) and the temporal features of the downstream pro-inflammatory cytokines' [tumour-necrosis-factor-alpha (TNF-alpha) and IP-10] mRNA levels in myeloid differentiation primary-response protein 88 (MyD88) knockouts (KOs), I developed a computational model of the TLR4 pathway. The result suggests that the late phase expression of NF-kappaB activity observed in MyD88 KOs is possibly due to a number of novel intermediates acting along the MyD88-independent pathway. I also simulate that the TNF-alpha levels will increase at a longer time in MyD88 KOs, not previously mentioned.  相似文献   

2.
3.
IL-15 plays a seminal role in innate immunity through enhancing the cytotoxic function as well as cytokine production by NK and T cells. We have previously shown that exposure of PBMC as well as monocytic cells to different viruses results in immediate up-regulation of IL-15 gene expression and subsequent NK cell activation as an innate immune response of those cells to these viruses. However, no signaling pathway involved in this up-regulation has been identified. Here we show for the first time that HSV-1-induced up-regulation of IL-15 gene expression is independent of viral infectivity/replication. IL-15 gene is up-regulated by HSV-1 in human monocytes, but not in CD3+ T cells. HSV-1 induces the phosphorylation of protein tyrosine kinases (PTKs) and protein kinase C (PKC) for inducing IL-15 expression in monocytic cells. Inhibitors for PTKs reduced HSV-1-induced PTK activity, DNA binding activity of NF-kB as well as IL-15 gene expression. In contrast, an inhibitor for membrane-bound tyrosine kinases had no effect on these events. Experiments using PKC inhibitors revealed that phosphorylation of PKC zeta/lambda (PKC zeta/lambda), DNA binding activity of NF-kB and HSV-1-induced up-regulation of IL-15 were all decreased. Furthermore, we found that HSV-1-induced IL-15 up-regulation was also dependent on PTKs regulation of PKC phosphorylation. Thus, we conclude that IL-15 up-regulation in HSV-1-treated monocytic cells is dependent on the activity of both PTKs and PKC zeta/lambda.  相似文献   

4.
In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor α are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCα. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.  相似文献   

5.
Imidazoline receptor antisera-selected protein (IRAS) is considered as a candidate for the I1-imidazoline receptor (I1R), but the signaling pathway mediated by IRAS remains unknown. In our study, the signal transduction pathways of IRAS were investigated in CHO cells stably expressing IRAS (CHO-IRAS), and compared to the native I1R signaling pathways. Rilmenidine or moxonidine (10 nM-100 microM), I1R agonists, failed to stimulate [35S]-GTPgammaS binding in CHO-IRAS cell membrane preparations, suggesting that G protein may not be involved in IRAS signaling pathway. However, incubation of CHO-IRAS with rilmenidine or moxonidine for 5 min could induce an upregulation of phosphatidylcholine-selective phospholipase C (PC-PLC) activity, and an increase in the accumulation of diacylglycerol (DAG), the hydrolysate of PC-PLC, in a concentration-dependent manner. The elevated activation of PC-PLC by rilmenidine or moxonidine (100 nM) could be blocked by efaroxan, a selective I1R antagonist. Cells treated with rilmenidine or moxonidine showed an increased level of extracellular signal-regulated kinase (ERK) phosphorylation in a concentration-dependent manner, which could be reversed by efaroxan or D609, a selective PC-PLC inhibitor. These results suggest that the signaling pathway of IRAS in response to I1R agonists coupled with the activation of PC-PLC and its downstream signal transduction molecule, ERK. These findings are similar to those in the signaling pathways of native I1R, providing some new evidence for the relationship between I1R and IRAS.  相似文献   

6.
7.
p38 mitogen-activated protein (MAP) kinase plays an important role in neurite outgrowth. However, the underlying molecular mechanism(s) remains unclear. Here, we demonstrate that phospholipase D2 (PLD2) mediates p38 signaling in neurite outgrowth. Stimulation of rat pheochromocytoma PC12 cells with nerve growth factor activated PLD2 and augmented neurite outgrowth, both of which were inhibited by pharmacological suppression of p38. Overexpression of constitutively active MAP kinase kinase 6 (MKK6-CA) activated coexpressed PLD2 in PC12 and mouse neuroblastoma N1E-115 cells. Overexpression of wild-type PLD2 in these cells strongly augmented the neurite outgrowth induced by MKK6-CA, whereas lipase-deficient PLD2 suppressed it. These findings provide evidence that PLD2 functions as a downstream molecule of p38 in the neurite outgrowth signaling cascade.  相似文献   

8.
Scavenger receptor, class B, type I (SR-BI) mediates binding and internalization of a variety of lipoprotein and nonlipoprotein ligands, including HDL. Studies in genetically engineered mice revealed that SR-BI plays an important role in HDL reverse cholesterol transport and protection against atherosclerosis. Understanding how SR-BI's function is regulated may reveal new approaches to therapeutic intervention in atherosclerosis and heart disease. We utilized a model cell system to explore pathways involved in SR-BI-mediated lipid uptake from and signaling in response to distinct lipoprotein ligands: the physiological ligand, HDL, and a model ligand, acetyl LDL (AcLDL). In Chinese hamster ovary-derived cells, murine SR-BI (mSR-BI) mediates lipid uptake via distinct pathways that are dependent on the lipoprotein ligand. Furthermore, HDL and AcLDL activate distinct signaling pathways. Finally, mSR-BI-mediated selective lipid uptake versus endocytic uptake are differentially regulated by protein kinase signaling pathways. The protein kinase C (PKC) activator PMA and the phosphatidyl inositol 3-kinase inhibitor wortmannin increase the degree of mSR-BI-mediated selective lipid uptake, whereas a PKC inhibitor has the opposite effect. These data demonstrate that SR-BI's selective lipid uptake activity can be acutely regulated by intracellular signaling cascades, some of which can originate from HDL binding to murine SR-BI itself.  相似文献   

9.
Xiaomei Yang 《FEBS letters》2010,584(11):2207-2212
The beta-2 adrenergic receptor (β2AR) has a carboxyl terminus motif that can interact with PSD-95/discs-large/ZO1 homology (PDZ) domain-containing proteins. In this paper, we identified membrane-associated guanylate kinase inverted-3 (MAGI-3) as a novel binding partner of β2AR. The carboxyl terminus of β2AR binds with high affinity to the fifth PDZ domain of MAGI-3, with the last four amino acids (D-S-L-L) of the receptor being the key determinants of the interaction. In cells, the association of full-length β2AR with MAGI-3 occurs constitutively and is enhanced by agonist stimulation of the receptor. Our data also demonstrated that β2AR-stimulated extracellular signal-regulated kinase-1/2 (ERK1/2) activation was substantially retarded by MAGI-3 expression. These data suggest that MAGI-3 regulates β2AR-mediated ERK activation through the physical interaction between β2AR and MAGI-3.

Structured summary

MINT-7716556: beta2AR (uniprotkb:P07550) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q5TCQ9) by anti tag coimmunoprecipitation (MI:0007)MINT-7716593: beta2AR (uniprotkb:P18762) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q9EQJ9) by anti bait coimmunoprecipitation (MI:0006)MINT-7716630: MAGI-3 (uniprotkb:Q5TCQ9) and beta2AR (uniprotkb:P07550) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7716382, MINT-7716335: MAGI-3 (uniprotkb:Q5TCQ9) physically interacts (MI:0915) with beta2AR (uniprotkb:P07550) by pull down (MI:0096)MINT-7716320, MINT-7716422, MINT-7716502, MINT-7716450, MINT-7716470: beta2AR (uniprotkb:P07550) binds (MI:0407) to MAGI-3 (uniprotkb:Q5TCQ9) by pull down (MI:0096)  相似文献   

10.
An imbalance in the matrix metalloproteinases/tissue inhibitors of metalloproteinases (MMPs/TIMPs) contributes to atherosclerotic plaque destabilization and rupture. Here we determined whether oxysterols accumulating in advanced atherosclerotic lesions play a role in plaque destabilization. In human promonocytic U937 cells, we investigated the effects of an oxysterol mixture of composition similar to that in advanced human carotid plaques on the expression and synthesis of MMP-9 and its endogenous inhibitors TIMP-1 and TIMP-2. A marked increment of MMP-9 gene expression, but not of its inhibitors, was observed by real-time RT-PCR; MMP-9 gelatinolytic activity was also found increased by gel zymography. Consistently, a net increment of MMP-9 protein level was also observed by immunoblotting. Using antioxidants or specific inhibitors or siRNAs, we demonstrated that the oxysterol mixture induces MMP-9 expression through: (i) overproduction of reactive oxygen species, probably by NADPH-oxidase and mitochondria; (ii) up-regulation of mitogen-activated protein kinase signaling pathways via protein kinase C; and (iii) up-regulation of activator protein-1- and nuclear factor-κB-DNA binding. These results suggest, for the first time, that oxysterols accumulating in advanced atherosclerotic lesions significantly contribute to plaque vulnerability by promoting MMP-9/TIMP-1/2 imbalance in phagocytic cells.  相似文献   

11.
In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKCα and PKCδ phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.  相似文献   

12.
Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.  相似文献   

13.
14.
15.
The role of p44/42 mitogen-activated protein kinase (MAPK) in the expression of intercellular adhesion molecule-1 (ICAM-1) in NCI-H292 cells, a human bronchial epithelial cell line, was analyzed. Treatment with the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) (16.2 nM) or interferon-gamma (IFN-gamma) (100 U/ml) induced phosphorylation of p44/42 MAPK. The MEK inhibitor U0126 (0.1 to 10 microM) enhanced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. U0126 also enhanced the ICAM-1 expression induced by two other PKC activators teleocidin (22.5 nM) and aplysiatoxin (14.9 nM). Furthermore, PD98059 (0.5 to 50 microM), another MEK inhibitor, enhanced the TPA-induced ICAM-1 expression as well. The inhibitor of p38 MAPK SB203580 did not affect the TPA-induced ICAM-1 expression. BAY11-7082, an inhibitor of nuclear factor kappaB (NF-kappaB) activation, and MG132, a 26S proteasome inhibitor, reduced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. TPA partially decreased the level of IkappaB-alpha and the reduction was further augmented by U0126 in a concentration-dependent manner. These findings suggested that, in NCI-H292 cells, p44/42 MAPK suppresses PKC activator-induced NF-kappaB activation, thus negatively regulating the PKC activator-induced ICAM-1 expression but not the IFN-gamma-induced one.  相似文献   

16.
17.
18.
The serotonin 5-hydroxytryptamine (5-HT4) receptor is of potential interest for the treatment of Alzheimer's disease because it increases memory and learning. In this study, we investigated the effect of zinc metalloprotease inhibitors on the amyloid precursor protein (APP) processing induced by the serotonin 5-HT4 receptor in vitro. We show that secretion of the non-amyloidogenic form of APP, sAPPalpha induced by the 5-HT4(e) receptor isoform was not due to a general boost of the constitutive secretory pathway but rather to its specific effect on alpha-secretase activity. Although the h5-HT4(e) receptor increased IP3 production, inhibition of PKC did not modify its effect on sAPPalpha secretion. In addition, we found that alpha secretase activity is regulated by the cAMP-regulated guanine nucleotide exchange factor, Epac and the small GTPase Rac.  相似文献   

19.
Hsu YC  Ip MM 《Cellular signalling》2011,23(12):2013-2020
Conjugated linoleic acid (CLA) has shown chemopreventive activity in several tumorigenesis models, in part through induction of apoptosis. We previously demonstrated that the t10,c12 isomer of CLA induced apoptosis of TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum (ER) stress pathways, and that the AMP-activated protein kinase (AMPK) played a critical role in the apoptotic effect. In the current study, we focused on the upstream pathways by which AMPK was activated, and additionally evaluated the contributing role of oxidative stress to apoptosis. CLA-induced activation of AMPK and/or induction of apoptosis were inhibited by infection of TM4t cells with an adenovirus expressing a peptide which blocks the interaction between the G protein coupled receptor (GPCR) and Gαq, by the phospholipase C (PLC) inhibitor U73122, by the inositol trisphosphate (IP3) receptor inhibitor 2-APB, by the calcium/calmodulin-dependent protein kinase kinase α (CaMKK) inhibitor STO-609 and by the intracellular Ca2+ chelator BAPTA-AM. This suggests that t10,c12-CLA may exert its apoptotic effect by stimulating GPCR through Gαq signaling, activation of phosphatidylinositol-PLC, followed by binding of the PLC-generated IP3 to its receptor on the ER, triggering Ca2+ release from the ER and finally stimulating the CaMKK–AMPK pathway. t10,c12-CLA also increased oxidative stress and lipid peroxidation, and antioxidants blocked its apoptotic effect, as well as the CLA-induced activation of p38 MAPK, a downstream effector of AMPK. Together these data elucidate two major pathways by which t10,c12-CLA induces apoptosis, and suggest a point of intersection of the two pathways both upstream and downstream of AMPK.  相似文献   

20.
There is a growing body of evidence to show that that C-reactive protein (CRP), an acute phase reactant, is one of the most valuable predictors of future cardiovascular events. Since CRP proteins directly contribute to the development and progression of atherosclerosis as well, reduction of CRP levels may be a novel therapeutic target for the treatment of cardiovascular disease. In this study, we examined whether pigment epithelium-derived factor (PEDF) could block the interleukin-6-induced CRP expression in cultured human hepatoma cells and the way that it might achieve this effect. PEDF inhibited the IL-6-induced CRP expression in Hep3B cells at both mRNA and proteins levels. PEDF suppressed the intracellular reactive oxygen species generation in IL-6-exposed Hep3B cells. Anti-oxidants mimicked the effects of PEDF. PEDF was also found to inhibit the IL-6-elicited Rac-1 activation, whereas dominant-negative Rac-1 dose-dependently decreased the CRP mRNA levels. PEDF blocked the IL-6-induced STAT3 phosphorylations and NF-kappaB p65 activity in Hep3B cells. Our present study suggests that PEDF could be one of the potent suppressors of CRP production by the liver and may play a protective role against atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号