首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microdomains, or lipid rafts, are transient membrane regions enriched in sphingolipids and sterols that have only recently, but intensively, been studied in plants. In this work, we report a detailed, easy-to-follow, and fast procedure to isolate detergent-resistant membranes (DRMs) from purified plasma membranes (PMs) that was used to obtain DRMs from Phaseolus vulgaris and Nicotiana tabacum leaves and germinating Zea mays embryos. Characterized according to yield, ultrastructure, and sterol composition, these DRM preparations showed similarities to analogous preparations from other eukaryotic cells. Isolation of DRMs from germinating maize embryos reveals the presence of microdomains at very early developmental stages of plants.  相似文献   

2.
《Molecular membrane biology》2013,30(4-6):170-177
Abstract

The apical surface of the enterocyte is sculpted into a dense array of cylindrical microvillar protrusions by supporting actin filaments. Membrane microdomains (rafts) enriched in cholesterol and glycosphingolipids comprise roughly 50% of the microvillar membrane and play a vital role in orchestrating absorptive/digestive action of dietary nutrients at this important cellular interface. Increased membrane thickness is believed to be a morphological characteristic of rafts. Thus, we investigated whether the high contents of lipid rafts in the microvillar membrane is reflected in local variations in membrane thickness. We measured membrane thickness directly from electron micrographs of sections of fixed mucosal tissue. Indeed, mapping of the microvillar membrane revealed a biphasic distribution of membrane thickness. As a point of reference the thickness distribution of the basolateral membrane was clearly monophasic. The encountered domains of increased thickness (DITs) occupied 48% of the microvillar membrane and from the data we estimated the area of a single DIT to have a lower limit of 600 nm2. In other experiments we mapped the organization of biochemically defined lipid rafts by immunogold labeling of alkaline phosphatase, a well documented raft marker. Strikingly, the alkaline phosphatase localized to distinct regions of the membrane in a pattern similar to the observed distribution of DITs. Although we were unable to measure membrane thickness directly on the immunogold labeled specimens, and thereby establish an unequivocal connection between DITs and rafts, we conclude that the brush border membrane of the enterocyte contains microdomains distinguishable both by membrane morphology and protein composition.  相似文献   

3.
Some basic aspects of incorporation of hydrophobic peptides and proteins in artificial lipid membranes are discussed. As examples valinomycin as a carrier model and gramicidin A as a channel former in lipid vesicles and in planar lipid membranes are presented.In the second part of the lecture some examples of incorporation of membrane proteins into lipid vesicles and planar lipid membranes are reported. The interaction with artificial lipid membranes of the Ca+ ATPase from the sarcoplasmic reticulum, of Rhodopsin, and of Bacteriorhodopsin is presented.Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

4.
Electric features of biological membranes are major determinants of the function and physiological manifestation of membrane-penetrating peptides, and such features are prone to be modulated by the properties of the surrounding aqueous medium. In this work, we demonstrate that pH plays crucial roles in modulating electric characteristics of zwitterionic-based artificial lipid membranes. The effect of pH on electrical properties of such membranes was probed by evaluating the transport properties of embedded alamethicin oligomers over a wide range of pH values (i.e., 0.65, 2.08, 2.94, 7 and 10.1). Our data strongly support the paradigm of a pH-dependent variation of the surface and membrane dipole potential which, in conjunction with possible lateral pressure effects within the lipid membrane, lead to a non-monotonic modulation of the electrical conductance of alamethicin oligomers. As expected, pH modulation of transport properties through the alamethicin oligomer is more visible for narrower pores (that is, the 1st conductive state) with slightly better cation selectivity as compared to larger oligomers.  相似文献   

5.
Measurements of contact-dependent fluorescence quenching and of fluorescence resonance energy transfer (FRET) within bilayers provide information concerning the spatial relationships between molecules on distance scales of a few nm or up a few tens of nm, respectively, and are therefore well suited to detect the presence and composition of membrane microdomains. As described in this review, techniques based on fluorescence quenching and FRET have been used to demonstrate the formation of nanoscale liquid-ordered domains in cholesterol-containing model membranes under physiological conditions, and to investigate the structural features of lipids and proteins that influence their partitioning between liquid-ordered and liquid-disordered domains. FRET-based methods have also been used to test for the presence of ‘raft’ microdomains in the plasma membranes of mammalian cells. We discuss the sometimes divergent findings of these studies, possible modifications to the ‘raft hypothesis’ suggested by studies using FRET and other techniques, and the further potential of FRET-based methods to test and to refine current models of the nature and organization of membrane microdomains.  相似文献   

6.
Current biochemical characterization for cholesterol- and glycolipid-rich membrane microdomains largely depends on analysis of detergent-resistant membranes (DRMs). In the present study, we succeeded in separation of DRMs of similar density-based on their electrical charge using free-flow electrophoresis (FFE). After crosslinking of B cell receptor (BCR), mouse splenic B cells were lysed with 1% Brij-58 and the resulting lysate was subjected to sucrose density gradient ultracentrifugation. The low-density fraction that recovered a part of DRMs containing IgM together with those enriched in GM1a, the Src family protein tyrosine kinase Lyn, and the alpha subunit of inhibitory heterotrimeric GTP-binding protein was further resolved by FFE. FFE separated the former into more cathodally deflected fractions than the latter. In addition, FFE revealed an anodal shift of DRMs containing a transmembrane protein CD38 upon BCR-crosslinking. The results demonstrate the effectiveness of FFE for the charge-based separation of DRMs.  相似文献   

7.
Total polyadenylated RNA from ripening or germinating Ricinus communis L. endosperm was translated in rabbit reticulocyte lysate in the absence or presence of canine pancreatic microsomes. The products were immunoprecipitated using antibodies raised againts Triton X-114-extracted integral membrane proteins of protein bodies or glyoxysomes. While the proteins of proteinbody membranes were found to insert co-translationally into added microsomes, this was not observed in the case of glyoxysomal proteins. This observation was confirmed using antibodies raised against a purified glyoxysome membrane protein, alkaline lipase. These results indicate that different routes exist for the insertion of membrane proteins into the two organelles. In both cases membrane-protein insertion does not appear to be accompanied by proteolytic processing.Abbreviations anti-PB antiserum to integral protein-body membrane proteins - anti-G antiserum to integral glyoxysomal membrane proteins - anti-L antiserum to alkaline lipase - ER endoplasmic reticulum - Mr relative molecular mass - mRNA poly(A)-rich messenger RNA - PAGE polyacrylamide gel electrophoresis - poly(A) polyadenylic acid - SDS sodium dodecyl sulphate  相似文献   

8.
Several lines of evidence suggest that detergent‐resistant membranes (DRMs) (also known as lipid rafts and glycosphingolipid‐enriched microdomains) may have a role in signaling pathways of apoptosis. Here, we developed a method that combines DRMs isolation and methanol/chloroform extraction with stable isotope labeling with amino acids in cell culture‐based quantitative proteome analysis of DRMs from control and cisplatin‐induced apoptotic Jurkat T cells. This approach enabled us to enrich proteins with a pivotal role in cell signaling of which several were found with increased or decreased amounts in DRMs upon induction of apoptosis. Specifically, we show that three isoforms of protein kinase C (PKC) are regulated differently upon apoptosis. Although PKCα which belongs to the group of conventional PKCs is highly up‐regulated in DRMs, the levels of two novel PKCs, PKCη and PKCθ, are significantly reduced. These alterations/differences in PKC regulation are verified by immunoblotting and confocal microscopy. In addition, a specific enrichment of PKCα in apoptotic blebs and buds is shown. Furthermore, we observe an increased expression of ecto‐PKCα as a result of exposure to cisplatin using flow cytometry. Our results demonstrate that in‐depth proteomic analysis of DRMs provides a tool to study differential localization and regulation of signaling molecules important in health and disease.  相似文献   

9.
TNFR1 (tumor necrosis factor receptor 1) localizes to caveolae of human endothelial-derived EA.hy926 cells. Transduced TNFR1 molecules lacking amino acid residues 229–244 (spanning the transmembrane/intercellular boundary) are expressed on the cell surface equivalently to full-length TNFR1 molecules but incompletely localize to caveolae. A peptide containing this sequence pulls down CAV-1 (caveolin-1) and TNFR1 from cell lysates but fails to do so following disruption of caveolae with methyl-β-cyclodextrin. We previously reported that methyl-β-cyclodextrin eliminates caveolae and blocks tumor necrosis factor (TNF)-induced internalization of TNFR1 but not TNF-induced activation of NF-κB in EA.hy926 cells. Both CAV-1 and FLOT-2 (flotillin-2), organizing proteins of caveolae and lipid rafts, respectively, associate with caveolae in EA.hy926 cells. Small interfering RNA-mediated knockdown of CAV-1 but not FLOT-2 strikingly reduces caveolae number. Both knockdowns reduce total TNFR1 protein expression, but neither prevents TNFR1 localization to low density membrane domains, TNF-induced internalization of TNFR1, or NF-κB activation by TNF. Both CAV-1 and FLOT-2 knockdowns reduce TNF-mediated activation of stress-activated protein kinase (SAPK). However, both knockdowns reduce expression of TRAF2 (TNF receptor-associated factor-2) protein, and small interfering RNA targeting of TRAF2 also selectively inhibits SAPK activation. We conclude that TNFR1 contains a membrane-proximal sequence that targets the receptor to caveolae/lipid rafts. Neither TNFR1 targeting to nor internalization from these low density membrane domains depends upon CAV-1 or FLOT-2. Furthermore, both NF-κB and SAPK activation appear independent of both TNFR1 localization to low density membrane domains and to TNF-induced receptor internalization.  相似文献   

10.
The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. Thus, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.  相似文献   

11.
Lipid dynamics and lipid-protein interactions were examined in basolateral membranes prepared from rat proximal and distal colonic epithelial cells. The results demonstrate that: (1) these membranes have a high lipid fluidity, as assessed by steady-state fluorescence polarization studies using seven fluorescent probes; (2) lipid compositional differences exist between these membranes but their fluidity is similar; (3) fluorescence polarizations studies, using diphenylhexatriene (DPH), detect a thermotropic transition at 22–23°C in each membrane; (4) several membrane protein activities, including adenylate cyclase and sodium-potassium dependent adenosine triphosphatase ((Na+ + K+)-ATPase) appear to be functionally dependent on the physical state of the proximal basolateral membrane's lipid.  相似文献   

12.
Dieter Volkmann 《Planta》1981,151(2):180-188
The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face - IMP intramembranous particle  相似文献   

13.
The structural details of membrane organization in germinating and senescing cotyledons of cowpea (Vigna unguiculata (L.) Walp.) were studied by thin section and freeze-fracture electron microscopy. Germination- and senescence-related changes in the ultrastructure of parenchymal cells of cowpea cotyledons, as detected in thin sections, closely resemble those described for other leguminous seeds. Additionally, electron-dense deposits associated with the membranes, particularly the plasmalemma and endoplasmic reticulum, were seen to increase with advancing senescence. Freeze-fracture electron microscopy demonstrated that the membranes of cotyledons of 2-d-old seedings appear to be normal, with evenly dispersed intramembranous particles. However by 4 d, small areas or domains of the plasmalemma were free of intramembranous particles. These particle-free areas increased in both size and number as senescence progressed. We interpret these particle-free areas to be structural evidence for lateral phase separations of the membrane lipids into microdomains of gel-phase lipid from which intrinsic membrane proteins are excluded. Our results support wide-angle X-ray diffraction studies which have demonstrated the presence of gel-phase lipids in senescing bean cotyledons.Abbreviations EF exoplasmic fracture - ER endoplasmic reticulum - ESR electron-spin resonance - IMP(s) intramembranous particle(s) - PF protoplasmic fracture  相似文献   

14.
The nature of subthreshold changes in excitable plasma membranes has been investigated in stem parenchyma cells of Cucurbita pepo L. during action-potential generation induced by gradual cooling (from 23 to 10 ° C). The character of the subthreshold depolarization of excitable cells is shown to be mainly defined by a decrease in the activity of the plasma-membrane electrogenie pump (H+-ATPase). In its turn, the pump activity is controlled by thermal changes in the structure of the membrane lipid matrix. Based on the results obtained, a sequence of subthreshold changes has been suggested in which thermally induced structural rearrangements of membrane lipids play the role of trigger.Abbreviations AP action potential - DCCD N,N-dicyclohexil-carbodiimide - Em membrane potential - Ie/Im ratio of pyrene excimer/monomer fluorescence intensities  相似文献   

15.
Four distinct integration/translocation routes into/across thylakoid membranes have recently been deduced for nuclear-encoded polypeptides of the photosynthetic membrane. Corresponding information for the plastid-encoded protein complement is lacking. We have investigated this aspect with in-organello assays employing chimeric constructs generated with codon-correct cassettes for genes of plastid-encoded thylakoid proteins, and appropriate transit peptides from six nuclear genes, representing three targeting classes, as a strategy. The three major plastid-encoded components of the cytochrome b 6  f complex, namely pre-apocytochrome f, (including apocytochrome f, and pre-apocytochrome f lacking the C-terminal transmembrane segment), cytochrome b 6 , and subunit IV, which differ in the number of their transmembrane segments, were studied. Import into chloroplasts could be observed in all instances but with relatively low efficiency. Thylakoid integration can occurr post-translationally, but only components with secretory/secretory pathway (SEC)-route-specific epitopes were correctly assembled with the cytochrome complex, or competed with this process. Inhibitor studies were consistent with these findings. Imported cytochrome b 6 and subunit IV operated with uncleaved targeting signals for thylakoid integration. The corresponding determinant for cytochrome f is its signal peptide; its C-terminal hydrophobic segment did not, or did not appreciably, contribute to this process. The N-termini of cytochrome b 6 and subunit IV appear to reside on the same (lumenal) side of the membrane, consistent with the currently favored four-helix model for the cytochrome, but in disagreement with the topography proposed for both components. The impact of the findings for protein routing, including for applied approaches such as compartment-alien transformation, is discussed. Received: 18 September 1996 / Accepted: 15 October 1996  相似文献   

16.
Complex sphingolipids are important components of eukaryotic cell membranes and, together with their biosynthetic precursors, including sphingoid long chain bases and ceramides, have important signaling functions crucial for cell growth and survival. Ceramides are produced at the endoplasmic reticulum (ER) membrane by a multicomponent enzyme complex termed ceramide synthase (CerS). In budding yeast, this complex is composed of two catalytic subunits, Lac1 and Lag1, as well as an essential regulatory subunit, Lip1. Proper formation of ceramides by CerS has been shown previously to require the Cka2 subunit of casein kinase 2 (CK2), a ubiquitous enzyme with multiple cellular functions, but the precise mechanism involved has remained unidentified. Here we present evidence that Lac1 and Lag1 are direct targets for CK2 and that phosphorylation at conserved positions within the C-terminal cytoplasmic domain of each protein is required for optimal CerS activity. Our data suggest that phosphorylation of Lac1 and Lag1 is important for proper localization and distribution of CerS within the ER membrane and that phosphorylation of these sites is functionally linked to the COP I-dependent C-terminal dilysine ER retrieval pathway. Together, our data identify CK2 as an important regulator of sphingolipid metabolism, and additionally, because both ceramides and CK2 have been implicated in the regulation of cancer, our findings may lead to an enhanced understanding of their relationship in health and disease.  相似文献   

17.
Toulmay A  Schneiter R 《Biochimie》2007,89(2):249-254
The proton pumping H+-ATPase, Pma1, is one of the most abundant integral membrane proteins of the yeast plasma membrane. Pma1 activity controls the intracellular pH and maintains the electrochemical gradient across the plasma membrane, two essential cellular functions. The maintenance of the proton gradient, on the other hand, also requires a specialized lipid composition of this membrane. The plasma membrane of eukaryotic cells is typically rich in sphingolipids and sterols. These two lipids condense to form less fluid membrane microdomains or lipid rafts. The yeast sphingolipid is peculiar in that it invariably contains a saturated very long-chain fatty acid with 26 carbon atoms. During cell growth and plasma membrane expansion, both C26-containing sphingolipids and Pma1 are first synthesized in the endoplasmatic reticulum from where they are transported by the secretory pathway to the cell surface. Remarkably, shortening the C26 fatty acid to a C22 fatty acid by mutations in the fatty acid elongation complex impairs raft association of newly synthesized Pma1 and induces rapid degradation of the ATPase by rerouting the enzyme from the plasma membrane to the vacuole, the fungal equivalent of the lysosome. Here, we review the role of lipids in mediating raft association and stable surface transport of the newly synthesized ATPase, and discuss a model, in which the newly synthesized ATPase assembles into a membrane environment that is enriched in C26-containing lipids already in the endoplasmatic reticulum. The resulting protein-lipid complex is then transported and sorted as an entity to the plasma membrane. Failure to successfully assemble this lipid-protein complex results in mistargeting of the protein to the vacuole.  相似文献   

18.
The membrane composition and lipid physical properties have been systematically investigated as a function of fatty acid composition for a series of Acholeplasma laidlawii B membrane preparations made homogeneous in various fatty acids by growing cells on single fatty acids and avidin, a potent fatty acid synthetic inhibitor. The membrane protein molecular weight distribution is essentially constant as a function of fatty acid composition, but the lipid/protein ratio varies over a 2-fold range when different fatty acid growth supplements are used. The membrane lipid head-group composition varies somewhat under these conditions, particularly in the ratio of the two major neutral glycolipids. Differential thermal analytical investigations of the thermotropic phase transitions of various combinations of membrane components suggest that these compositional changes are unlikely to result in qualitative changes in the nature of lipid-protein or lipid-lipid interactions, although lesser changes of a quantitative nature probably do occur. The total lipids of membranes made homogeneous in their lipid fatty acyl chain composition exhibit sharper than normal gel-to-liquid-crystalline phase transitions of which midpoint temperatures correlate very well with the phase transition temperatures of synthetic hydrated phosphatidylcholines with like acyl chains. Our results indicate that using avidin and suitable fatty acids to grow A. laidlawii B, it is possible to manipulate the position and the sharpness of the membrane lipid phase transition widely and independently without causing major modifications in other aspects of the membrane composition. This fact makes the fatty acid-homogeneous A. laidlawii B membrane a very useful biological membrane preparation in which to study lipid physical properties and their functional consequences.  相似文献   

19.
S-Acylation of proteins is a ubiquitous post-translational modification and a common signal for membrane association. The major palmitoylated protein in erythrocytes is MPP1, a member of the MAGUK family and an important component of the ternary complex that attaches the spectrin-based skeleton to the plasma membrane. Here we show that DHHC17 is the only acyltransferase present in red blood cells (RBC). Moreover, we give evidence that protein palmitoylation is essential for membrane organization and is crucial for proper RBC morphology, and that the effect is specific for MPP1. Our observations are based on the clinical cases of two related patients whose RBC had no palmitoylation activity, caused by a lack of DHHC17 in the membrane, which resulted in a strong decrease of the amount of detergent-resistant membrane (DRM) material. We confirmed that this loss of detergent-resistant membrane was due to the lack of palmitoylation by treatment of healthy RBC with 2-bromopalmitic acid (2-BrP, common palmitoylation inhibitor). Concomitantly, fluorescence lifetime imaging microscopy (FLIM) analyses of an order-sensing dye revealed a reduction of membrane order after chemical inhibition of palmitoylation in erythrocytes. These data point to a pathophysiological relationship between the loss of MPP1-directed palmitoylation activity and perturbed lateral membrane organization.  相似文献   

20.
Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca2+-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1–101), or its short scaffolding domain (81–101) via a novel structural site. In recoverin this site is localized in C-terminal domain in proximity to the third EF-hand motif and composed of aromatic amino acids conserved among NCS proteins. Remarkably, the binding of NCS proteins to caveolin-1 occurs only in the absence of calcium, which is in agreement with higher accessibility of the caveolin-1 binding site in their Ca2+-free forms. Consistently, the presence of caveolin-1 produces no effect on regulatory activity of Ca2+-saturated recoverin or NCS1 towards rhodopsin kinase, but upregulates GCAP2, which potentiates guanylate cyclase activity being in Ca2+-free conformation. In addition, the interaction with caveolin-1 decreases cooperativity and augments affinity of Ca2 + binding to recoverin apparently by facilitating exposure of its myristoyl group. We suggest that at low calcium NCS proteins are compartmentalized in photoreceptor rafts via binding to caveolin-1, which may enhance their activity or ensure their faster responses on Ca2+-signals thereby maintaining efficient phototransduction recovery and light adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号