共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Shirato M Tozawa S Maeda D Watanabe M Nakagama H Masutani M 《Biochemical and biophysical research communications》2007,355(2):451-456
Poly(ADP-ribose) is a biopolymer synthesized by poly(ADP-ribose) polymerases. Recent findings suggest the possibility for modulation of cellular functions including cell death and mitosis by poly(ADP-ribose). Derivatization of poly(ADP-ribose) may be useful for investigating the effects of poly(ADP-ribose) on various cellular processes. We prepared poly(etheno ADP-ribose) (poly(epsilonADP-ribose)) by converting the adenine moiety of poly(ADP-ribose) to 1-N(6)-etheno adenine residues. Poly(epsilonADP-ribose) is shown to be highly resistant to digestion by poly(ADP-ribose) glycohydrolase (Parg). On the other hand, poly(epsilonADP-ribose) could be readily digested by phosphodiesterase. Furthermore, poly(epsilonADP-ribose) inhibited Parg activity to hydrolyse ribose-ribose bonds of poly(ADP-ribose). This study suggests the possibility that poly(epsilonADP-ribose) might be a useful tool for studying the poly(ADP-ribose) dynamics and function of Parg. This study also implies that modification of the adenine moiety of poly(ADP-ribose) abrogates the susceptibility to digestion by Parg. 相似文献
3.
Gao H Coyle DL Meyer-Ficca ML Meyer RG Jacobson EL Wang ZQ Jacobson MK 《Experimental cell research》2007,313(5):984-996
Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Delta2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Delta2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Delta2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain. 相似文献
4.
H. Thomassin C. Martins de Sa K. Scherrer C. Maniez P. Mandel 《Molecular biology reports》1988,13(1):35-44
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.Abbreviations ADP-ribose
adenosine (5) diphospho(5)--D ribose
- poly(ADP-ribose)
polymer of ADP-ribose
- mRNP
messenger ribonucleoprotein particles
- PMSF
phenylmethylsulfonyl fluoride
- LDS
lithium dodecyl sulfate
- TCA
trichloroacetic acid 相似文献
5.
Alexandra I.J. Stowell Dominic I. James Ian D. Waddell Neil Bennett Caroline Truman Ian M. Hardern Donald J. Ogilvie 《Analytical biochemistry》2016
Poly(ADP-ribose) (PAR) polymers are transient post-translational modifications, and their formation is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. A number of PARP inhibitors are in advanced clinical development for BRCA-mutated breast cancer, and olaparib has recently been approved for BRCA-mutant ovarian cancer; however, there has already been evidence of developed resistance mechanisms. Poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of the endo- and exo-glycosidic bonds within the PAR polymers. As an alternative strategy, PARG is a potentially attractive therapeutic target. There is only one PARG gene, compared with 17 known PARP family members, and therefore a PARG inhibitor may have wider application with fewer compensatory mechanisms. Prior to the initiation of this project, there were no known existing cell-permeable small molecule PARG inhibitors for use as tool compounds to assess these hypotheses and no suitable high-throughput screening (HTS)-compatible biochemical assays available to identify start points for a drug discovery project. The development of this newly described high-throughput homogeneous time-resolved fluorescence (HTRF) assay has allowed HTS to proceed and, from this, the identification and advancement of multiple validated series of tool compounds for PARG inhibition. 相似文献
6.
Naoyuki Okita Daisuke Ashizawa Hideaki Abe Sei-ichi Tanuma 《Biochemical and biophysical research communications》2010,392(4):485-1877
Poly(ADP-ribosyl)ation, which is mainly regulated by poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG), is a unique protein modification involved in cellular responses such as DNA repair and replication. PARG hydrolyzes glycosidic linkages of poly(ADP-ribose) synthesized by PARP and liberates ADP-ribose residues. Recent studies have suggested that inhibitors of PARG are able to be potent anti-cancer drug. In order to discover the potent and specific Inhibitors of PARG, a quantitative and high-throughput screening assay system is required. However, previous PARG assay systems are not appropriate for high-throughput screening because PARG activity is measured by radioactivities of ADP-ribose residues released from radioisotope (RI)-labeled poly(ADP-ribose). In this study, we developed a non-RI and quantitative assay system for PARG activity based on dot-blot assay using anti-poly(ADP-ribose) and nitrocellulose membrane. By our method, the maximum velocity (Vmax) and the michaelis constant (km) of PARG reaction were 4.46 μM and 128.33 μmol/min/mg, respectively. Furthermore, the IC50 of adenosine diphosphate (hydroxymethyl) pyrrolidinediol (ADP-HPD), known as a non-competitive PARG inhibitor, was 0.66 μM. These kinetics values were similar to those obtained by traditional PARG assays. By using our assay system, we discovered two novel PARG inhibitors that have xanthene scaffold. Thus, our quantitative and convenient method is useful for a high-throughput screening of PARG specific inhibitors. 相似文献
7.
Niere M Mashimo M Agledal L Dölle C Kasamatsu A Kato J Moss J Ziegler M 《The Journal of biological chemistry》2012,287(20):16088-16102
8.
9.
Amé Jean-Christophe Jacobson Elaine L. Jacobson Elaine L. Jacobson Elaine L. Jacobson Myron K. Jacobson Myron K. 《Molecular and cellular biochemistry》1999,193(1-2):75-81
We have recently described the isolation and characterization of bovine cDNA encoding poly(ADP-ribose) glycohydrolase (PARG). We describe here the preparation and characterization of antibodies to PARG. These antibodies have been used to demonstrate the presence of multiple forms of PARG in tissue and cell extracts from bovine, rat, mouse, and insects. Our results indicate that multiple forms of PARG previously reported could result from a single gene. Analysis of PARG in cells in which poly(ADP-ribose) polymerase (PARP) has been genetically inactivated indicates that the cellular content of PARG is regulated independently of PARP. 相似文献
10.
Haiyan Huang Gonghua Hu Jianfeng Cai Bo Xia Jianjun Liu Xuan Li Wei Gao Jianqing Zhang Yinpin Liu Zhixiong Zhuang 《Biochemical and biophysical research communications》2014
Benzo(a)pyrene (BaP) is a known carcinogen cytotoxic which can trigger extensive cellular responses. Many evidences suggest that inhibitors of poly(ADP-ribose) glycohydrolase (PARG) are potent anticancer drug candidates. However, the role of PARG in BaP carcinogenesis is less understood. Here we used PARG-deficient human bronchial epithelial cell line (shPARG cell) as an in vitro model, and investigated the role of PARG silencing in DNA methylation pattern changed by BaP. Our study shows, BaP treatment decreased global DNA methylation levels in 16HBE cells in a dose-dependent manner, but no dramatic changes were observed in shPARG cells. Further investigation revealed PARG silencing protected DNA methyltransferases (DNMTs) activity from change by BaP exposure. Interestingly, Dnmt1 is PARylated in PARG-null cells after BaP exposure. The results show a role for PARG silencing in DNA hypomethylation induced by BaP that may provide new clue for cancer therapy. 相似文献
11.
12.
Pacheco-Rodriguez Gustavo Alvarez-Gonzalez Rafael 《Molecular and cellular biochemistry》1999,193(1-2):13-18
We have developed a novel enzyme assay that allows the simultaneous determination of noncovalent interactions of poly(ADP-ribose) with nuclear proteins as well as poly(ADP-ribose) glycohydrolase (PARG) activity by high resolution polyacrylamide gel electrophoresis. ADP-ribose chains between 2 and 70 residues in size were enzymatically synthesized with pure poly(ADP-ribose) polymerase (PARP) and were purified by affinity chromatography on a boronate resin following alkaline release from protein. This preparation of polymers of ADP-ribose was used as the enzyme substrate for purified PARG. We also obtained the nuclear matrix fraction from rat liver nuclei and measured the enzyme activity of purified PARG in the presence or absence of either histone proteins or nuclear matrix proteins. Both resulted in a marked inhibition of PARG activity as determined by the decrease in the formation of monomeric ADP-ribose. The inhibition of PARG was presumably due to the non-covalent interactions of these proteins with free ADP-ribose polymers. Thus, the presence of histone and nuclear matrix proteins should be taken into consideration when measuring PARG activity. 相似文献
13.
Phenolic phytochemicals such as tannins, which are natural constituents of green tea, red wine, and other plant products, are considered to have cancer-preventive properties. An important endogenous mediator of tumorigenesis is the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1). PARP-1 synthesizes polymers of ADP-ribose (PAR), which, in turn, are degraded by the catabolic enzyme poly(ADP-ribose) glycohydrolase (PARG). In the present study, we investigated the effects of tannins on the level of PAR in HeLa nuclear extracts. The addition of tannins to nuclear extracts led to a 40-fold elevation of PAR-levels. The observed increased PAR-levels resulted from inhibition of the catalytic activity of PARG. Additionally, the human PARG cDNA was cloned and the recombinant enzyme was overexpressed and isolated. Recombinant PARG was immobilized using an affinity column composed of tannins covalently linked to Sepharose beads. Finally, an interaction between immobilized PARG and endogenous PARP-1 from HeLa cell extracts is demonstrated. 相似文献
14.
15.
Poly (ADP-ribose) synthetase and NAD glycohydrolase were examined in nuclear fractions from rat brain at sequential times during late fetal and the first two weeks of neonatal life. In whole brain, both enzymes were demonstrable at all stages of development, but followed separate patterns. Activity of the synthetase which was greatest in fetal life, fell steadily with fetal maturation from 3.90±0.06 nmol/mg DNA at 16 days, to reach a nadir of 1.36±0.09 nmol/mg DNA on the 4th postnatal day. Subsequently it underwent a non sustained neonatal rise reaching a peak of 2.46±0.07 nmol/mg DNA on the 8th day. By contrast, NAD glycohydrolase activity increased steadily throughout late fetal and during the first two weeks of neonatal life, from 12.77±0.40 nmol/mg DNA on day 16 of gestation to 25.80±.95 nmol/mg DNA on neonatal day 12. In neonatal cerebellum the activity of poly (ADP-ribose) synthetase was greater at 8 than at 4 days, could be stimulated with graded concentrations of sonicated DNA up to 100 g, but was inhibited by higher concentrations of DNA and by all concentrations of exogenous histone. In an in vitro culture system of fetal rat brain cells, the activity of poly (ADP-ribose) synthetase increased steadily over six days. Cycloheximide 10–3 M completely inhibited the activity of this enzyme. NAD glycohydrolase activity increased progressively in vitro, and after 6 days in cycloheximide (10–3 M), the cultures contained significantly greater levels of enzyme activity. It is suggested that changing activities of poly (ADP-ribose) synthetase and NAD glycohydrolase could both provide potential markers for brain cell differentiation in this system. 相似文献
16.
Jana Krietsch Michèle Rouleau Émilie Pic Chantal Ethier Ted M. Dawson Valina L. Dawson Jean-Yves Masson Guy G. Poirier Jean-Philippe Gagné 《Molecular aspects of medicine》2013
Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. 相似文献
17.
Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments 总被引:1,自引:0,他引:1
Meyer-Ficca ML Meyer RG Coyle DL Jacobson EL Jacobson MK 《Experimental cell research》2004,297(2):521-532
Poly(ADP-ribose) glycohydrolase (PARG) is the only protein known to catalyze hydrolysis of ADP-ribose (ADPR) polymers to free ADP-ribose. While numerous genes encode different poly(ADP-ribose) polymerases (PARPs) that all synthesize ADP-ribose polymer, only a single gene coding for PARG has been detected in mammalian cells. Here, we describe two splice variants of human PARG mRNA, which lead to expression of PARG isoforms of 102 kDa (hPARG102) and 99 kDa (hPARG99) in addition to the full-length PARG protein (hPARG111). These splice variants differ from hPARG111 by the lack of exon 1 (hPARG102) or exons 1 and 2 (hPARG99). They are generated by the utilization of ambiguous splice donor sites in the PARG gene 5' untranslated region. The hPARG111 isoform localizes to the nucleus, whereas hPARG102 and hPARG99 are cytoplasmic proteins. The nuclear targeting of hPARG111 is due to a nuclear localization signal (NLS) in exon 1 that was mapped to the amino acids (aa) (10)CTKRPRW(16). Immunocytochemistry, immunoblotting, and PARG enzyme activity measurements show that the cytoplasmic isoforms of PARG account for most of the PARG activity in cells in the absence and presence of genotoxic stress. The predominantly cytoplasmic location of cellular PARG is intriguing as most known cellular PARPs have a nuclear localization. 相似文献
18.
《DNA Repair》2015
Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered. 相似文献
19.
Contrary to common perception bone is a dynamic organ flexibly adapting to changes in mechanical loading by shifting the delicate balance between bone formation and bone resorption carried out by osteoblasts and osteoclasts, respectively. In the past decades numerous studies demonstrating production of reactive oxygen or nitrogen intermediates, effects of different antioxidants, and involvement of prototypical redox control mechanisms (Nrf2–Keap1, Steap4, FoxO, PAMM, caspase-2) have proven the central role of redox regulation in the bone. Poly(ADP-ribosyl)ation (PARylation), a NAD-dependent protein modification carried out by poly(ADP-ribose) polymerase (PARP) enzymes recently emerged as a new regulatory mechanism fine-tuning osteoblast differentiation and mineralization. Interestingly PARylation does not simply serve as a signaling mechanism during osteoblast differentiation but also couples it to osteoblast death. Even more strikingly, the poly(ADP-ribose) polymer likely released from succumbed cells at the terminal stage of differentiation is incorporated into the bone matrix representing the first structural role of this versatile biopolymer. Moreover, this new paradigm explains why and how osteodifferentiation and death of cells entering this pathway are closely coupled to each other. Here we review the role of reactive oxygen and nitrogen intermediates as well as PARylation in osteoblast and osteoclast differentiation, function, and cell death. 相似文献
20.
László Virág Agnieszka Robaszkiewicz Jose Manuel Rodriguez-Vargas Francisco Javier Oliver 《Molecular aspects of medicine》2013
Poly(ADP-ribosyl)ation (PARylation) is a reversible protein modification carried out by the concerted actions of poly(ADP-ribose) polymerase (PARP) enzymes and poly(ADP-ribose) (PAR) decomposing enzymes such as PAR glycohydrolase (PARG) and ADP-ribosyl hydrolase 3 (ARH3). Reversible PARylation is a pleiotropic regulator of various cellular functions but uncontrolled PARP activation may also lead to cell death. The cellular demise pathway mediated by PARylation in oxidatively stressed cells has been described almost thirty years ago. However, the underlying molecular mechanisms have only begun to emerge relatively recently. PARylation has been implicated in necroptosis, autophagic cell death but its role in extrinsic and intrinsic apoptosis appears to be less predominant and depends largely on the cellular model used. Currently, three major pathways have been made responsible for PARP-mediated necroptotic cell death: (1) compromised cellular energetics mainly due to depletion of NAD, the substrate of PARPs; (2) PAR mediated translocation of apoptosis inducing factor (AIF) from mitochondria to nucleus (parthanatos) and (3) a mostly elusive crosstalk between PARylation and cell death/survival kinases and phosphatases. Here we review how these PARP-mediated necroptotic pathways are intertwined, how PARylation may contribute to extrinsic and intrinsic apoptosis and discuss recent developments on the role of PARylation in autophagy and autophagic cell death. 相似文献