首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The localization of metallothionein-1 (MT-1) mRNA to the perinuclear cytoskeleton is determined by a signal in the 3′untranslated region (3′UTR) and trans-acting binding proteins. The present study carried out detailed mapping of this signal and further characterized the binding to elongation factor 1 alpha (eEF1α) and other interacting proteins. Electrophoresis mobility shift assays demonstrated that shortening of a stem region proximal to nucleotides 66-76 abrogated binding. Full length recombinant rat eEF1α, and independently domains I and III, formed complexes with the mRNA. Proteins binding to biotinylated MT-1 3′UTR sequences were isolated using RNA-affinity techniques, and mass spectrometry identified histidine-tRNA ligase as one of the major MT-1 3′UTR binding proteins. We conclude that a 5-bp internal stem in the MT-1 3′UTR is critical for binding of eEF1α and histidine-tRNA ligase, and that binding of eEF1α is facilitated through domains I and III.  相似文献   

5.
Cycloheximide is a protein synthesis inhibitor that superinduces the expression of many genes by preventing the degradation of otherwise labile mRNAs. In some genes this depends on the presence of the AUUUA destabilizing multimers in the 3′UTR. We examined the effect of cycloheximide on the murine intercellular adhesion molecule-1 (ICAM-1; CD54) gene expression in several cell lines including A20 (B cell lymphoma), T28 (T cell hybridoma), P388D1 (monocytic cell), SVEC4-10 (lymphoid endothelial cell), and ICAM-1-transfected murine fibroblast L cells. Cycloheximide was indeed able to dramatically increase the accumulation of ICAM-1 mRNA in all the cell lines examined except T28, and this seemed to be due to the stablization of the ICAM-1 mRNA as indicated by the half-life analysis. To determine whether this effect is dependent on the 3′UTR containing the AUUUA sequences, L cells were transfected with either the full-length ICAM-1 cDNA or a truncated form lacking the AUUUA sequences in the 3′UTR (ICAM-1Δ3). There was no discernible difference in the effect of cycloheximide on ICAM-1 mRNA accumulation or half-life between the two types of transfected cells. The effect of cycloheximide on ICAM-1 mRNA was markedly suppressed by serine/threonine (ser/thr) kinase inhibitors, H-7 and staurosporine, whereas the ser/thr phosphatase inhibitor, okadaic acid, augmented the cycloheximide effect. Inhibitors of protein tyrosine kinases and phosphatases had no effect. Unexpectedly, the level of cell surface ICAM-1 as well as de novo synthesis of ICAM-1 in SVEC4-10 and the ICAM-1-transfected L cells were also upregulated by cycloheximide, whereas the overall protein synthesis in these cells was profoundly inhibited, suggesting that ICAM-1 protein synthesis in these cells escapes the translational inhibition by cycloheximide. These results suggest that the stabilization of ICAM-1 mRNA by cycloheximide is independent of its translational inhibition and that ser/thr phosphorylation of unidentified protein(s) seems to play a crucial role in this effect. © 1995 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
Enhancing effect of taurine on CYP7A1 mRNA expression in Hep G2 cells   总被引:1,自引:0,他引:1  
Summary. Taurine has been reported to enhance cholesterol 7α-hydroxylase (CYP7A1) mRNA expression in animal models. However, no in vitro studies of this effect have been reported. The Hep G2 human hepatoma cell line has been recognized as a good model for studying the regulation of human CYP7A1. This work characterizes the effects of taurine on CYP7A1 mRNA levels of Hep G2 cells in a dose- and time-dependent manner. In the dose-dependent experiment, Hep G2 cells were treated with 0, 2, 10 or 20 mM taurine in the presence or absence of cholesterol 0.2 mM for 48 h. In the time-dependent experiment, Hep G2 cells were treated with 0 or 20 mM taurine for 4, 24 and 48 h with and without cholesterol 0.2 mM. Our data revealed that taurine showed time- and dose-response effects on CYP7A1 mRNA levels in Hep G2 cells. However, glycine – a structural analogue of taurine – did not have an effect on CYP7A1 gene expression. These results show that, in agreement to previous studies on animal models, taurine induces the mRNA levels of CYP7A1 in Hep G2 cells, which could enhance cholesterol conversion into bile acids. Also, Hep G2 cell line may be an appropriate model to study the effects of taurine on human cholesterol metabolism.  相似文献   

9.
10.
11.
Bcl-2/adenovirus E1B 19 kDa interacting protein 2 like-1 (BNIPL-1) is a novel human protein identified in our laboratory, which can interact with Bcl-2 and Cdc42GAP and induce apoptosis via the BNIP-2 and Cdc42GAP homology (BCH) domain. In the present study, we established the Hep3B-Tet-on stable cell line in which expression of BNIPL-1 can be induced by doxycycline. The cell proliferation activity assay showed that the overexpression of BNIPL-1 suppresses Hep3B cell growth in vitro. The differential expression profiles of 588 known genes from BNIPL-1-transfected Hep3B-Tet-on and vector control cells were determined using the Atlas human cDNA expression array. Fifteen genes were differentially expressed between these two cell lines, among which seven genes were up-regulated and eight genes were down-regulated by BINPL-1. Furthermore, the differential expression result was confirmed by semiquantitative RT-PCR. Among these differentially expressed genes, p16^INK4, IL-12, TRAIL and the lymphotoxin β gene involved in growth suppression or cell apoptosis were up-regulated, and PTEN involved in cell proliferation was down-regulated by BNIPL-1. These results suggest that BNIPL-1 might inhibit cell growth though cell cycle arrest and/or apoptotic cell death pathway(s).  相似文献   

12.
The purine analog fludarabine (Fd) is an essential therapeutic for chronic lymphocytic leukemia (CLL). Innate or acquired resistance to Fd is a significant clinical problem and is largely mediated by increased expression of BCL-2 family members. The antiapoptotic BCL-2 family proteins inhibit both apoptosis and autophagy, therefore, downregulation of antiapoptotic BCL-2 family proteins and enhanced autophagy must coexist in cells dying in response to an apoptosis inducing therapeutic. However, in the drug-resistant cells that have an increased dependence on antiapoptotic proteins, whether autophagy is also inhibited remains unclear. Here, we examined the role of the BCL-2 family in regulating cell death and autophagy in leukemic cell lines and their derivative isogenic Fd-resistant (FdR) cells. MCL-1 degradation following Fd treatment freed the proapoptotic effectors BIM and BECN1, thus leading to cell death-associated autophagy in Fd-sensitive cells. However, in FdR cells, low BIM expression and BECN1 sequestration by MCL-1 prevented cell death. Consistently, in sensitive cells inhibition of apoptosis using siBIM and of both the early-phase autophagy nucleation steps by siBECN1, shATG7 or 3-methyladenine and the late-phase autophagy by shLAMP2, significantly reduced Fd-induced cell death. Paradoxically, FdR cells were addicted to basal autophagy, which was dependent on AMP-activated protein kinase (AMPK) but not BECN1. Moreover, in FdR cells, inhibition of autophagy by shLAMP2, but not siBECN1, enhanced cell death. The BH3-mimetic obatoclax released BIM and BECN1 from MCL-1 in Fd-sensitive and BECN1 from MCL-1 in FdR cells, and was effective at killing both Fd-sensitive and - resistant leukemic cells, including primary CLL cells. Therefore, a differential regulation of autophagy through BECN1 and AMPK signaling in Fd-sensitive and - resistant cells determines the different possible outcomes of autophagy inhibition. These findings suggest effective means to overcome Fd resistance by induction of BIM-dependent apoptosis and activation of BECN1-dependent autophagy.  相似文献   

13.
14.
Sudan dyes possess a high affinity to the aryl hydrocarbon receptor (AHR) and potently induce its target genes, such as cytochrome P450 (CYP) 1A1, through unknown mechanisms. We investigated a detailed event occurring in cells after binding of Sudan dye to AHR in HepG2 cells. Treatment with 10 μM Sudan III caused rapid translocation of AHR into the nucleus and increased expression levels of human CYP1A1 mRNA by approximately 20-fold after 16 and 24 h. The transactivation was due to the activation of a region located at -1137 to +59 bp from CYP1A1, in particular, four xenobiotic responsive elements (XREs) existing in the region. AHR and the Ah receptor nuclear translocator interacted with XRE sequences in a gel shift assay using nuclear extract from Sudan III--treated HepG2 cells. Moreover, we suggest that constitutive androstane receptor could modify CYP1A1 transactivation by Sudan III.  相似文献   

15.
Presence of A+U-rich elements (AREs) within 3-untranslated regions (3UTRs) of numerous mRNAs has been associated with rapid mRNA turnover; however, the interaction of specific factors with AREs is also associated with mRNA stabilization. Recently, two ARE binding proteins with putative mRNA destabilizing (AUF1) and stabilizing (HuR) properties have been described. However, no direct comparison of AUF1 and HuR binding properties has been made. Therefore, we examined the relative affinities of p37AUF1 and HuR for a diverse set of ARE-containing mRNAs encoding -adrenergic receptors, a proto-oncogene, and a cytokine. We find that high-affinity AUF1 binding appears to require elements beyond primary nucleotide sequence. In contrast, binding of HuR appears considerably less constrained. As a functional correlate, we determined the ability of these specific mRNA sequences to affect the stability of chimeric -globin mRNA constructs. Although the relative affinity of AUF1 and HuR are generally predictive of mRNA stability, we find that certain mRNA sequences do not conform to these generalizations.  相似文献   

16.
Previously, thunberginols A and B from the processed leaves of Hydrangeae macrophylla var. thunbergii (Hydrangea dulcis folium) substantially inhibited the degranulation caused by antigen and calcium ionophore A23187, and the release of tumor necrosis factor (TNF)-α and interleukin (IL)-4 by antigen in RBL-2H3 cells. In the present study, we examined the effect of thunberginol B on the expression of mRNA of several cytokines [ILs-2, 3, 4 and 13, TNF-α and granulocyte/macrophage-colony stimulating factor (GM-CSF)] and effects of thunberginols A and B on activator protein (AP)-1 composed of c-jun and c-fos, which is essential for the expression of the cytokine mRNA, in RBL-2H3 cells. Thunberginol B inhibited up-regulated genes of all cytokines, and thunberginols A and B (30 μM) inhibited the phosphorylation of c-jun and expression of c-fos mRNA and phosphorylation of extracellular signal-regulated kinases (ERK1/2). In addition, the profile of gene expression by thunberginol B was similar to that by luteolin, a natural flavone with a potent anti-allergic effect.  相似文献   

17.
18.
19.
Transferrin receptor 2 (TfR2) is a homolog of transferrin receptor 1 (TfR1), the receptor responsible for the uptake of iron-loaded transferrin (holo-Tf) into cells. Unlike the ubiquitous TfR1, TfR2 is predominantly expressed in the liver. Mutations in TfR2 gene cause a rare autosomal recessive form of the iron overload disease, hereditary hemochromatosis. Previous studies demonstrated that holo-Tf increases TfR2 levels by stabilizing TfR2 at the protein level. In this study we constructed two chimeras, one of which had the cytoplasmic domain of TfR2 and the remaining portion of TfR1 and the other with the cytoplasmic and transmembrane domain of TfR1 joined to the ectodomain of TfR2. Similar to TfR2, the levels of the chimera containing only the cytoplasmic domain of TfR2 increased in a time- and dose-dependent manner after the addition of holo-Tf to the medium. The half-life of the chimera increased 2.7-fold in cells exposed to holo-Tf like the endogenous TfR2 in HepG2 cells. Like TfR2 and unlike TfR1, the levels of the chimera did not respond to intracellular iron content. These results suggest that although holo-Tf binding to the ectodomain is necessary, the cytoplasmic domain of TfR2 is largely responsible for its stabilization by holo-Tf.  相似文献   

20.
Human immunodeficiency virus type-1 (HIV-1) Rev acts by inducing the specific nucleocytoplasmic transport of a class of incompletely spliced RNAs that encodes the viral structural proteins. The transfection of HeLA cells with a rev-defective HIV-1 expression plasmid, however, resulted in the export of overexpressed, intron-containing species of viral RNAs, possibly through a default process of nuclear retention. Thus, this system enabled us to directly compare Rev+ and Rev cells as to the usage of RRE-containing mRNAs by the cellular translational machinery. Biochemical examination of the transfected cells revealed that although significant levels of gag and env mRNAs were detected in both the presence and absence of Rev, efficient production of viral proteins was strictly dependent on the presence of Rev. A fluoroscence in situ hybridisation assay confirmed these findings and provided further evidence that even in the presence of Rev, not all of the viral mRNA was equally translated. At the early phase of RNA export in Rev+ cells, gag mRNA was observed throughout both the cytoplasm and nucleoplasm as uniform fine stippling. In addition, the mRNA formed clusters mainly in the perinuclear region, which were not observed in Rev cells. In the presence of Rev, expression of the gag protein was limited to these perinuclear sites where the mRNA accumulated. Subsequent staining of the cytoskeletal proteins demonstrated that in Rev+ cells gag mRNA is colocalized with β-actin in the sites where the RNA formed clusters. In the absence of Rev, in contrast, the gag mRNA failed to associate with the cytoskeletal proteins. These results suggest that in addition to promoting the emergence of intron-containing RNA from the nucleus, Rev plays an important role in the compartmentation of translation by directing RRE-containing mRNAs to the β-actin to form the perinuclear clusters at which the synthesis of viral structural proteins begins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号