首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparing beta-carotene,vitamin E and nitric oxide as membrane antioxidants   总被引:2,自引:0,他引:2  
Singlet oxygen initiates lipid peroxidation via a nonfree radical mechanism by reacting directly with unsaturated lipids to form lipid hydroperoxides (LOOHs). These LOOHs can initiate free radical chain reactions leading to membrane leakage and cell death. Here we compare the ability and mechanism by which three small-molecule membrane antioxidants (beta-carotene, alpha-tocopherol and nitric oxide) inhibit lipid peroxidation in membranes. We demonstrate that beta-carotene provides protection against singlet oxygen-mediated lipid peroxidation, but does not slow free radical-mediated lipid peroxidation. Alpha-Tocopherol does not protect cells from singlet oxygen, but does inhibit free radical formation in cell membranes. Nitric oxide provides no direct protection against singlet oxygen exposure, but is an exceptional chain-breaking antioxidant as evident from its ability to blunt oxygen consumption during free radical-mediated lipid peroxidation. These three small-molecule antioxidants appear to have complementary mechanisms for the protection of cell membranes from detrimental oxidations.  相似文献   

2.
Iron and free radical oxidations in cell membranes.   总被引:5,自引:0,他引:5  
Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive.  相似文献   

3.
Phospholipid hydroperoxide glutathione peroxidase (PhGPx) directly reduces hydroperoxides of phospholipid and cholesterol to their corresponding alcohols. There are two forms of PhGPx: L-PhGPx localizes in mitochondria and S-PhGPx in cytosol. Antisense oligodeoxynucleotides can inhibit specific protein expression. We tested the hypothesis that antisense oligodeoxynucleotides could be designed to inhibit PhGPx expression and thereby sensitize cells to lipid peroxidation induced by singlet oxygen. We chose P4 cells, a cell line established from L-PhGPx cDNA transfected MCF-7 cells, as our cell model. Lipid peroxidation was induced by singlet oxygen generated by Photofrin and visible light. We found that the antisense oligodeoxynucleotide (5' GCCGAGGCTCATCGCGGCGG 3') was effective in suppressing L-PhGPx mRNA, PhGPx protein, and activity. This antisense oligodeoxynucleotide did not interfere with S-PhGPx. When cells were exposed to singlet oxygen, lipid hydroperoxides were produced in the cells. L-PhGPx was able to remove these hydroperoxides; this removal was inhibited by antisense treatment. The inhibition of L-PhGPx by the antisense oligodeoxynucleotides also resulted in increased membrane damage as measured by trypan blue dye exclusion. These data demonstrate that PhGPx expression can be manipulated by antisense techniques.  相似文献   

4.
S R Ribarov  L C Benov  V I Marcova 《Blut》1983,46(4):217-225
The mechanism of iron toxicity in iron overloaded patients is not well established. A hypothesis was put forward that free radical processes are involved. Our earlier study indicates that iron-induced hemolysis is preceded by peroxidation of the membrane lipids. In the present work the simultaneous effect of iron and hemoglobin on lipid peroxidation was studied. It was found that in hemoglobin-containing liposome suspensions Fe2+ in concentrations above 10(-5) M inhibits the peroxidation, while Fe3+ drastically potentiates it, with concomitant transformation of oxyhemoglobin to methemoglobin. The experiments with scavengers of activated oxygen indicate superoxide anion radical (O-.2), hydroxyl radical (OH.) and singlet oxygen (1O2) participation. The possible mechanism of the phenomenon is discussed. A conclusion is drawn that the toxic effect of Fe3+ may be associated not only with iron--membrane interaction, but also with increased methemoglobin formation and O-.2 release.  相似文献   

5.
Oxygen is necessary for aerobic metabolism but can cause the harmful oxidation of lipids and other macromolecules. Oxidation of cholesterol and phospholipids containing polyunsaturated fatty acyl chains can lead to lipid peroxidation, membrane damage, and cell death. Lipid hydroperoxides are key intermediates in the process of lipid peroxidation. The lipid hydroperoxidase glutathione peroxidase 4 (GPX4) converts lipid hydroperoxides to lipid alcohols, and this process prevents the iron (Fe2+)‐dependent formation of toxic lipid reactive oxygen species (ROS). Inhibition of GPX4 function leads to lipid peroxidation and can result in the induction of ferroptosis, an iron‐dependent, non‐apoptotic form of cell death. This review describes the formation of reactive lipid species, the function of GPX4 in preventing oxidative lipid damage, and the link between GPX4 dysfunction, lipid oxidation, and the induction of ferroptosis.  相似文献   

6.
In pregnant females, placenta is the most important source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides is often linked to preeclampsia. In our study, we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) occurred. In the presence of Fe2+ ion, HPM produced small amounts of thiobarbituric acid-reactive substances (TBARS) – a final product of lipid peroxidation. NADPH caused a strong increase of iron stimulated TBARS formation. TBARS formation was inhibited by superoxide dismutase, butylated hydroxytoluene and α-tocopherol but not by mannitol or catalase. TBARS and superoxide radical production was inhibited in similar manner by cytochrome P450 inhibitors. The results obtained led us to the following conclusions: (1) microsomal lipid peroxidation next to mitochondrial lipid peroxidation may by an important source of lipid hydroperoxides in blood during pregnancy and (2) superoxide radical released by microsomal cytochrome P450 is an important factor in NADPH- and iron-dependent lipid peroxidation in HPM.  相似文献   

7.
Nonheme, nonferritin iron has been detected in membrane preparations from sickle erythrocytes and has been suggested to catalyze free radical reactions in these cells contributing to the development of membrane oxidation. In this study the hydroxypyridinone iron chelator, CP094, currently being evaluated as a potentially therapeutic chelator, and desferrioxamine have been studied for their abilities to chelate the nonheme iron within intact sickle erythrocytes under physiological conditions. The results suggest that CP094 can enter sickle erythrocytes, chelate nonheme iron and suppress membrane lipid peroxidation within a timescale in which desferrioxamine does not enter the cells. Suppression of lipid peroxidation showed no protective effect in an in vitro system inducing the formation of irreversibly sickled cells.  相似文献   

8.
王建华  徐同 《生态学报》1993,13(3):228-234
以棉花子叶为材料研究了模拟酸雨对活性氧代谢的影响,发现酸雨使膜保护酶活性下降,膜脂质过氧化作用加强,超氧化物歧化酶在控制子叶膜脂质过氧化中起重要作用。自由基清除剂(FRS)的应用能有效地抑制伤害子叶膜脂质过氧化作用,并有利于保持较高的膜保护酶活性和维持活性氧代谢平衡。  相似文献   

9.
Exposure of red blood cells to oxygen radicals can induce hemoglobin damage and stimulate protein degradation, lipid peroxidation, and hemolysis. To determine if these events are linked, rabbit erythrocytes were incubated at 37 degrees C with various oxygen radical-generating systems and antioxidants. Protein degradation, measured by the production of free alanine, increased more than 11-fold in response to xanthine (X) + xanthine oxidase (XO). A similar increase in proteolysis occurred when the cells were incubated with acetaldehyde plus XO, with ascorbic acid plus iron (Asc + Fe), or with hydrogen peroxide (H2O2) alone. Upon addition of XO, increased proteolysis was evident within 5 min and was linear for up to 5 h. In contrast, lipid peroxidation, as shown by the production of malonyldialdehyde, conjugated dienes, or lipid hydroperoxides was observed only after 2 h of incubation with X + XO, acetaldehyde + XO, or H2O2. Ascorbate plus Fe2+ induced both protein degradation and lipid peroxidation; however, the addition of various antioxidants (urate, xanthine, glucose, or butylated hydroxytoluene) decreased lipid peroxidation without affecting proteolysis. Thus, these processes seem to occur by distinct mechanisms. Furthermore, at low concentrations of XO, protein degradation was clearly increased in the absence of detectable lipid peroxidation products. Hemolysis occurred only in a small number of cells (9%) and followed the appearance of lipid peroxidation products. Thus, an important response of red cells to oxygen radicals is rapid degradation of damaged cell proteins. Increased proteolysis seems to occur independently of membrane damage and to be a more sensitive indicator of cell exposure to oxygen radicals than is lipid peroxidation.  相似文献   

10.
The behavior of benzo[a]pyrene (B[a]P) during peroxidation of phosphatidylcholine (PC) liposomes initiated by an azo compound was investigated to examine the mechanism of quinone formation from carcinogenic B[a]P mediated by nonenzymatic lipid peroxidation occurring in vivo. B[a]P had a retarding effect on the peroxidation of polyunsaturated fatty acid moiety of PC. The major oxidation products which accumulated in the peroxidized liposomes were B[a]P 1,6-, 3,6-, and 6,12-quinone. Antioxidants acting as scavengers of chain-propagating lipid peroxy radicals effectively prevented not only lipid peroxidation but also B[a]P oxidation in the liposomal suspension. PC hydroperoxides, the primary products of PC oxidation, did not react with B[a]P in the absence of the azo compound, indicating that lipid peroxy radicals, not lipid hydroperoxides, are responsible for the formation of these quinones. The experiments using 18O2 gas and 18O-labeled methyl linoleate hydroperoxides demonstrated that B[a]P quinones are formed by incorporating molecular oxygen and their origin is partly due to the lipid peroxy radical. The mechanism proposed for the formation of B[a]P quinones mediated by peroxidation of membrane lipids involves a direct attack of the lipid peroxy radical on B[a]P and subsequent autocatalytic oxidation. Weak carcinogenic and noncarcinogenic pentacyclic aromatic hydrocarbons showed little reactivity to the lipid peroxy radical in the liposomes. Thus, the facility of the peroxidative attack on B[a]P may be related to the powerful carcinogenic activity of this substance.  相似文献   

11.
Serum provides cultured cells with survival factors required to maintain growth. Its withdrawal induces the development of programmed cell death. HL-60 cells were sensitive to serum removal, and an increase of lipid peroxidation and apoptosis was observed. Long-term treatment with ethidium bromide induced the mitochondria-deficient °HL-60 cell line. These cells were surprisingly more resistant to serum removal, displaying fewer apoptotic cells and lower lipid peroxidation. HL-60 cells contained less ubiquinone at the plasma membrane than °HL-60 cells. Both cell types increased plasma membrane ubiquinone in response to serum removal, although this increase was much higher in ° cells. Addition of ubiquinone to both cell cultures in the absence of serum improved cell survival with decreasing lipid peroxidation and apoptosis. Ceramide was accumulated after serum removal in HL-60 but not in °HL-60 cells, and exogenous ubiquinone reduced this accumulation. These results demonstrate a relationship between ubiquinone levels in the plasma membrane and the induction of serum withdrawal induced apoptosis, and ceramide accumulation. Thus, ubiquinone, which is a central component of the plasma membrane electron transport system, can represent a first level of protection against oxidative damage caused by serum withdrawal.  相似文献   

12.
Human polymorphonuclear leukocytes produce large quantities of superoxide when they attack and kill bacteria. However, superoxide is a weak oxidizing and reducing agent, and other more reactive oxygen species derived from reactions of superoxide are suggested to participate in the killing processes. To test the hypothesis that a reactive free radical or singlet oxygen is involved in bactericidal activity, human polymorphonuclear leukocytes were exposed to phagocytozable particles containing lipids that contain the easily autoxidized 1,4-diene moiety. After incubation the preparations were extracted and the extracts reduced with NaBH4 to convert hydroperoxides to stable alcohols. Using gas chromatography/mass spectrometry to analyze the extracts, we were unable to detect products unless iron salts were added to the medium. The products obtained by extraction are those that would be expected if both free radical chain autoxidation and 1O2 oxidation were taking place. In summary, we find that polymorphonuclear leukocytes do not cause peroxidation, implying that formation of strongly oxidizing free radicals is not an intrinsic property of the leukocyte. Added iron catalyzes peroxidation by activated leukocytes yielding an unusual distribution of hydroxylated products.  相似文献   

13.
The effect of lipid peroxidation on lipolysis depends on the intactness of the adipocyte plasma membrane. In the intact cells, the norepinephrine-stimulated lipolysis was inhibited, while the basal one was elevated. In the lysed cells, lipid peroxidation had no effect upon hormone-stimulated lipolysis, but the basal one was strongly inhibited. The effects of free radical damage (iron plus ascorbate ions) were compared to those of malondialdehyde, a non-radical product of lipid peroxidation. Although qualitatively similar, deterioration of plasma membrane induced by malondialdehyde was much lower than by free radicals. The changes in lipolytic response to norepinephrine were accompanied by a drastic reduction in the number of beta-adrenergic receptors.  相似文献   

14.
The results of this study suggest that the well-documented loss of GSH and ascorbate in organisms under oxidative stress may be mainly due to their reactions with protein radicals and/or peroxides. Protein hydroperoxides were generated in HL-60 cells exposed to radiation-generated hydroxyl radicals. We found for the first time evidence of chain peroxidation of the proteins in cells, with each hydroxyl radical leading to the formation of about 10 hydroperoxides. Protein peroxidation showed a lag, probably due to the endogenous antioxidant enzymes, with simultaneous loss of the intracellular GSH. Enhancement of the GSH levels by N-acetylcysteine decreased the formation of hydroperoxides, while treatment with l-buthionine sulfoximine had the opposite effect. The effect of variation of GSH levels on the formation of the peroxidized proteins is explained primarily by reduction of the protein hydroperoxides by GSH. Loading of the cells with ascorbate resulted in reduction of the amounts of protein hydroperoxides generated by the radiation, which was proportional to the intracellular ascorbate concentration. In contrast to the GSH, inhibition of protein hydroperoxide formation in the presence of the high (mM) intracellular ascorbate levels achieved was mainly due to the direct scavenging of hydroxyl radicals by the vitamin.  相似文献   

15.
Endothelial cells, macrophages, neutrophils, and neuronal cells generate superoxide (O2-) and nitric oxide (.NO) which can combine to form peroxynitrite anion (ONOO-). Peroxynitrite, known to oxidize sulfhydryls and to yield products indicative of hydroxyl radical (.OH) reaction with deoxyribose and dimethyl sulfoxide, is shown herein to induce membrane lipid peroxidation. Peroxynitrite addition to soybean phosphatidylcholine liposomes resulted in malondialdehyde and conjugated diene formation, as well as oxygen consumption. Lipid peroxidation was greater at acidic and neutral pH, with no significant lipid peroxidation occurring above pH 9.5. Addition of ferrous (Fe+2) or ferric (Fe+3) iron did not enhance lipid peroxide formation over that attributable to peroxynitrite alone. Diethylenetetraminepentacetic acid (DTPA) or iron removal from solutions by ion-exchange chromatography decreased conjugated diene formation by 25-50%. Iron did not play an essential role in initiating lipid peroxidation, since DTPA and iron depletion of reaction systems were only partially inhibitory. In contrast, desferrioxamine had an even greater concentration-dependent inhibitory effect, completely abolishing lipid peroxidation at 200 microM. The strong inhibitory effect of desferrioxamine on lipid peroxidation was due to direct reaction with peroxynitrous acid in addition to iron chelation. We conclude that the conjugate acid of peroxynitrite, peroxynitrous acid (ONOOH), and/or its decomposition products, i.e., .OH and nitrogen dioxide (.NO2), initiate lipid peroxidation without the requirement of iron. These observations demonstrate a potential mechanism contributing to O2-(-)and .NO-mediated cytotoxicity.  相似文献   

16.
Lipid peroxidation of membranes by oxygen free radicals has been implicated in various disease states. Different antioxidants and iron chelators have been used to reduce lipid peroxidation. Lazaroids have been used for the acute treatment of central nervous system disorders such as trauma and ischemia wherein lipid peroxidative processes take place.In this study we evaluated the effect of lazaroids (U-785 18F and U-74389F) on the release of acid phosphatase activity and formation of malondialdehyde (MDA) in rat liver lyosomes subjected to exogenously generated oxygen free radicals. There was a significant increase in the acid phosphatase release and MDA formation in the presence of oxygen free radicals. This was prevented by both the lazaroids. In a separate study the effect of lazaroid U-74389F was seen on the zymosan-stimulated polymorphonuclear (PMN) leukocyte-derived chemiluminescence. The PMN leukocyte chemiluminescent activity was attenuated by the lazaroid in a dose-dependent manner. These studies suggest that lazaroids may inhibit lipid peroxidation and stabilize the membrane.  相似文献   

17.
The diabetogenic action of alloxan is believed to involve oxygen free radicals and iron. Incubation of glutathione (GSH) and alloxan with rat liver ferritin resulted in release of ferrous iron as assayed by spectrophotometric detection of ferrous-bathophenanthroline complex formation. Neither GSH nor alloxan alone mediated iron release from ferritin. Superoxide dismutase (SOD) and catalase did not affect initial rates of iron release whereas ceruloplasmin was an effective inhibitor of iron release. The reaction of GSH with alloxan resulted in the formation of the alloxan radical which was detected by ESR spectroscopy and by following the increase in absorbance at 310nm. In both instances, the addition of ferritin resulted in diminished alloxan radical detection. Incubation of GSH, alloxan, and ferritin with phospholipid liposomes also resulted in lipid peroxidation. Lipid peroxidation did not occur in the absence of ferritin. The rates of lipid peroxidation were not affected by the addition of SOD or catalase, but were inhibited by ceruloplasmin. These results suggest that the alloxan radical releases iron from ferritin and indicates that ferritin iron may be involved in alloxan-promoted lipid peroxidation.  相似文献   

18.
The generation of hydroxyl free radicals in 60Co gamma-irradiation of a dilute aqueous suspension of phosphatidyl choline liposomes, resulted in the rapid accumulation of lipid hydroperoxides (linearly with time), but only small concentrations of malondialdehyde. Incubation of the irradiated liposomes with ferric chloride was found to significantly increase the malondialdehyde, and evidence is presented that this resulted from iron catalysed decomposition of the lipid hydroperoxide. This suggests a role for free iron or iron chelates in the propagation of lipid peroxidation stimulated by other systems.  相似文献   

19.
The chronic combined inhalation influence of nitric oxides (II, IV), amorphic hydrophobic silicon dioxide, lead and radon on the free radical processes intensively was investigated. The dienic conjugates, lipid hydroperoxides and MDA concentration in the liver and kidney of the white mongrel male-rats was defined. It has been shown that lipid peroxidation process displaies sensitivity toward complex exposure of the most wide-spreader xenobiotics. It was expressed in the content decreasing of there products at the first step of our experience as a result of the action of the adaptive and compensative mechanisms directed to the suppression of the peroxidation processes. As a result of the antioxidant system powers exhaustion it was found the content rising of the lipid peroxidation products at the last step of our experience. It has been proposed to use the total content index of the lipid peroxidation products as a criteria of the organism resistant ion toward action of the exogenic factors of various origin.  相似文献   

20.
Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. The protective role of antioxidant enzymes against singlet oxygen-induced oxidative damage in HL-60 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole and oxlalomalate, specific inhibitors of superoxide dismutase, catalase and NADP+-dependent isocitrate dehydrogenase, respectively. Upon exposure to rose bengal (20 μM)/light (15 min), which generates singlet oxygen, to HL-60 cells, the viability was lower and the lipid peroxidation and oxidative DNA damage were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species as well as the significant decrease in the intracellular GSH level in inhibitor-treated HL-60 cells exposed to singlet oxygen. Upon exposure to rose bengal (3 μM)/light (15 min), which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated HL-60 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against singlet oxygen-induced cell death including necrosis and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号