首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Do human platelets express COX-2?   总被引:4,自引:0,他引:4  
The rate-limiting enzyme in prostaglandin (PG)- and thromboxane (TX)-synthesis is known as cyclooxygenase (COX). The COX-enzyme family consists of the classical COX-1 and the inducible COX-2-enzyme. To investigate whether platelets contain COX-2, we measured thiobarbituric acid reactive substances (TBARS) after either blocking COX-1 or COX-2 or adding compounds known to affect COX-expression. To stimulate platelets' different reagents such as collagen, thrombin and arachidonic acid (AA) were used. The inhibitors used in this study were acetylsalicylic acid (ASA), indomethacin and NS-398. Using the western-blot technique, we failed to detect COX-2 in platelets while COX-1 was detectable. We were not able to discover COX-2 in platelets using the methods we applied. As the amount of COX-2 in platelets might be below the detection limit of the methods used, the biological relevance COX-2 in platelets, if even existing at low amounts, remains to be established.  相似文献   

3.
《Cell》1998,93(5):705-716
To explore the role of cyclooxygenase (COX) in endothelial cell migration and angiogenesis, we have used two in vitro model systems involving coculture of endothelial cells with colon carcinoma cells. COX-2-overexpressing cells produce prostaglandins, proangiogenic factors, and stimulate both endothelial migration and tube formation, while control cells have little activity. The effect is inhibited by antibodies to combinations of angiogenic factors, by NS-398 (a selective COX-2 inhibitor), and by aspirin. NS-398 does not inhibit production of angiogenic factors or angiogenesis induced by COX-2-negative cells. Treatment of endothelial cells with aspirin or a COX-1 antisense oligonucleotide inhibits COX-1 activity/expression and suppresses tube formation. Cyclooxygenase regulates colon carcinoma-induced angiogenesis by two mechanisms: COX-2 can modulate production of angiogenic factors by colon cancer cells, while COX-1 regulates angiogenesis in endothelial cells.  相似文献   

4.
COX-2 is involved in inflammation and ischemic cardiovascular disease. As NO regulates COX activity in various cells, we investigated the effect of NO-donors and the novel NO-aspirin NC-4016 on human monocyte COX-2. Whole blood was incubated with LPS and PGE(2) was measured in plasma as an index of monocyte COX-2 activity. Serum TxB(2) was assessed as an index of platelet COX-1 activity. SNP, DetaNONOate, and NO-aspirin inhibited dose-dependently PGE(2) production while aspirin was ineffective. The guanylyl-cyclase inhibitor ODQ partially reversed the suppression of COX-2 activity by NO-aspirin, demonstrating a role of cGMP increase. NC-4016 and aspirin inhibited platelet COX-1 comparably while NO-donors were ineffective. COX-2 expression was not affected by NO-donors or NO-aspirin while aspirin or the selective COX-2-inhibitor DUP697 increased it. In conclusion, Nitroaspirin inhibits monocyte COX-2 activity by a cGMP-dependent mechanism. This might represent an advantage over aspirin, given the possible detrimental role of COX-2 in cardiovascular disease.  相似文献   

5.
A nonselective inhibitor of cyclooxygenase (COX; high-dose aspirin) and a relatively selective inhibitor of inducible nitric oxide synthase (iNOS; aminoguanidine) have been found to inhibit development of diabetic retinopathy in animals, raising a possibility that NOS and COX play important roles in the development of retinopathy. In this study, the effects of hyperglycemia on retinal nitric oxide (NO) production and the COX-2 pathway, and the interrelationship of the NOS and COX-2 pathways in retina and retinal cells, were investigated using a general inhibitor of NOS [N(G)-nitro-l-arginine methyl ester (l-NAME)], specific inhibitors of iNOS [l-N(6)-(1-iminoethyl)lysine (l-NIL)] and COX-2 (NS-398), and aspirin and aminoguanidine. In vitro studies used a transformed retinal Müller (glial) cell line (rMC-1) and primary bovine retinal endothelial cells (BREC) incubated in 5 and 25 mM glucose with and without these inhibitors, and in vivo studies utilized retinas from experimentally diabetic rats (2 mo) treated or without aminoguanidine or aspirin. Retinal rMC-1 cells cultured in high glucose increased production of NO and prostaglandin E(2) (PGE(2)) and expression of iNOS and COX-2. Inhibition of NO production with l-NAME or l-NIL inhibited all of these abnormalities, as did aminoguanidine and aspirin. In contrast, inhibition of COX-2 with NS-398 blocked PGE(2) production but had no effect on NO or iNOS. In BREC, elevated glucose increased NO and PGE(2) significantly, whereas expression of iNOS and COX-2 was unchanged. Viability of rMC-1 cells or BREC in 25 mM glucose was significantly less than at 5 mM glucose, and this cell death was inhibited by l-NAME or NS-398 in both cell types and also by l-NIL in rMC-1 cells. Retinal homogenates from diabetic animals produced significantly greater than normal amounts of NO and PGE(2) and of iNOS and COX-2. Oral aminoguanidine and aspirin significantly inhibited all of these increases. The in vitro results suggest that the hyperglycemia-induced increase in NO in retinal Müller cells and endothelial cells increases production of cytotoxic prostaglandins via COX-2. iNOS seems to account for the increased production of NO in Müller cells but not in endothelial cells. We postulate that NOS and COX-2 act together to contribute to retinal cell death in diabetes and to the development of diabetic retinopathy and that inhibition of retinopathy by aminoguanidine or aspirin is due at least in part to inhibition of this NO/COX-2 axis.  相似文献   

6.
Evidence for the expression of cyclooxygenase-2 enzyme in periodontitis   总被引:3,自引:0,他引:3  
We investigated the role of the inducible isoform of cyclooxygenase (COX-2) in a rat model of periodontitis using a selective COX-2 inhibitor NS-398. Periodontitis was produced by a silk ligature placed around the lower left 1st molar. Animals were treated with NS-398 (3 mg kg(-1) i.p., 2 times per day for 7 days) or vehicle. At Day 8, the gingivomucosal tissues encircling the mandibular 1st molars were removed on both sides for COX-2 immunohistochemistry, measurement of plasma extravasation by the Evans blue technique, and alveolar bone loss by videomicroscopy. Immunohistochemical analysis revealed numerous strongly COX-2-positive cells in the subepithelial tissues in the ligated side and only a few COX-2-reactive cells in the contralateral (control) side. Ligation significantly increased Evans blue extravasation in the gingivomucosal tissue and alveolar bone destruction compared to the control side. NS-398 treatment significantly reduced the plasma extravasation and alveolar bone resorption of the ligated side compared to vehicle administration. The present results suggest that COX-2 is induced by periodontitis, and plays an important role in gingival inflammation and alveolar bone destruction. In a previous study (Br J Pharmacol 1998;123:353-60) we found the expression of the inducible isoform of nitric oxide synthase in this model. Therefore, based on our own data and the literature, we propose that selective inhibition of these inducible enzymes might be a basis for adjunctive therapy, or new therapeutic approaches in periodontitis.  相似文献   

7.
8.
Cyclooxygenase (COX)-2 is generally known as an inducible enzyme, and it produces arachidonic acid to prostaglandin E2 (PGE2), which modulates bone metabolism. Here, we investigated the expression and role of COX isomers in human mesenchymal stem cells. Human mesenchymal stem cells constitutively expressed COX-2 as well as COX-1, and secretion of PGE2 was completely inhibited by NS-398, a specific inhibitor of COX-2. Levels of secreted PGE2 were strikingly higher in human mesenchymal stem cells than in osteoblastic cells differentiated from the mesenchymal cells. This higher production of PGE2 in mesenchymal stem cells was due to higher expression of membrane-associated PGE synthase (mPGES) regulated by early growth response factor-1 (Egr-1). Treatment of human mesenchymal stem cells with NS-398 suppressed expression of bone morphogenetic protein-2 (BMP-2). The suppression of BMP-2 by NS-398 was abrogated by an EP4 receptor agonist as well as by PGE2. Moreover, BMP-2 expression was suppressed by an EP4 receptor antagonist. These data indicate that PGE2 produced by COX-2 increases BMP-2 expression via binding the EP4 receptor.  相似文献   

9.
Because the induction of new lipid body formation in leukocytes correlates with and likely contributes to their enhanced 'primed' prostaglandin and leukotriene formation, we evaluated two selective cyclooxygenase (COX)-2 inhibitors. Three types of stimuli, cis -unsaturated fatty acids, platelet activating factor and protein kinase C activators, stimulate lipid body formation. NS-398 (0.1-10 microM), but not another COX-2 inhibitor, SC58125 (0.1- 10 microM), blocked leukocyte lipid body formation elicited by all three types of stimuli and also blocked priming for enhanced LTB(4) production and PGE(2) production. The effect of NS-398 on lipid body formation was independent of its inhibitory effects on COX-2 since arachidonate-induced lipid body formation in COX-2-deficient mouse leukocytes was also inhibited by NS-398. By means of its ability to inhibit leukocyte lipid body formation, NS-398 may exert actions independent of its COX-2 inhibition and more broadly contribute to the suppression of formation of COX-1 and lipoxygenase-derived eicosanoids.  相似文献   

10.
Radioimmunologic data provide evidence that the pregnant rat uterus produces thromboxane B2 (TXB2). To provide further evidence that this radioimmunologic compound is TXB2, an extract of media incubated with uteri from 21-day pregnant rats was passed through a silicic acid column and each 1-ml eluate was tested for its ability to displace tritiated TXB2 from antibody. One peak was found and it corresponded to that of authentic TXB2 eluted through an identical column. Rechromatographing the peak on a thin-layer plate, the radioimmunologic peak again corresponded with the TXB2 standard. Since blood platelets are a major source of thromboxane, their presence in the vasculature of tissues makes them a possible contaminating factor. Following aspirin (300 mg) intubation into rats on either gestational Day 18, 19 or 20, in vitro production of the TXB2 by isolated uteri and washed platelets was determined and compared to the same tissues from untreated rats. When aspirin was administered 1 day prior to autopsy, TXB2 production by uterine tissue was 32% of the control uterus. Platelet TXB2 production was 25% of control platelets. When aspirin was administered 2 days prior to autopsy, uterine TXB2 production increased to 60% of the control, while platelet TXB2 was 43% of the control. When aspirin was administered 3 days prior to autopsy, uterine TXB2 production was higher than that of control, while platelet TXB2 production was 54% of the control. The more rapid recovery of TXB2 by uterine tissue compared to platelets suggest that the TXB2 produced by uterine tissue is not due solely to platelet contamination.  相似文献   

11.
The murine gammaherpesvirus 68 (MHV-68 or gammaHV-68) model provides many advantages for studying virus-host interactions involved in gammaherpesvirus replication, including the role of cellular responses to infection. We examined the effects of cellular cyclooxygenase-2 (COX-2) and its by-product prostaglandin E(2) (PGE(2)) on MHV-68 gene expression and protein production following de novo infection of cultured cells. Western blot analyses revealed an induction of COX-2 protein in MHV-68-infected cells but not in cells infected with UV-irradiated MHV-68. Luciferase reporter assays demonstrated activation of the COX-2 promoter during MHV-68 replication. Two nonsteroidal anti-inflammatory drugs, a COX-2-specific inhibitor (NS-398) and a COX-1-COX-2 inhibitor (indomethacin), substantially reduced MHV-68 protein production in infected cells. Inhibition of viral protein expression and virion production by NS-398 was reversed in the presence of exogenous PGE(2). Global gene expression analysis using an MHV-68 DNA array showed that PGE(2) increased production of multiple viral gene products, and NS-398 inhibited production of many of the same genes. These studies suggest that COX-2 activity and PGE(2) production may play significant roles during MHV-68 de novo infection.  相似文献   

12.
Cyclooxygenase-1 is the primary isoform responsible for the production of cytoprotective prostaglandins (PGE(2) and PGI(2)) in the stomach. In contrast COX-2 is induced at the sites of inflammation. Using Helicobacter pylori infection as a model of inflammation, this study was designed to evaluate the effects of H. pylori infection on prostanoid synthesis and expression of COX-2 in human gastric mucosa.Prostaglandin (PGE(2)) and prostacyclin (PGI(2)) synthesis in gastric biopsies obtained from 21 patients undergoing diagnostic endoscopy, were determined. H. pylori was detected by CLO test, histology and culture. Biopsy samples were incubated either with NS-398, selective COX-2 inhibitor or aspirin. Samples were also treated with endotoxin (LPS) in order to induce COX-2 expression. Tissue was also analysed for COX-2 expression in vivo by immunohistochemistry.In 15 out of 21 patients, H. pylori was detected by at least two of the three methods. Higher levels of PGE(2) and PGI(2) were seen in patients infected with H. pylori (191+/-30 and 245+/-88ng/mg protein, respectively) compared with non-infected patients (77+/-17 and 120+/-36ng/mg protein, respectively). There was significant inhibition of PGE(2) and PGI(2) with aspirin in both H. pylori infected (28+/-6.6 and 53+/-43ng/mg, respectively) and in non-infected patients (16+/-7 and 12.5+/-3.5ng/mg protein, respectively). However, NS-398 and LPS did not alter prostaglandin function significantly. Immunohistochemistry in all patients irrespective of Hp status demonstrated expression of COX-2.Lower concentration of constitutive expression of COX-2 was detected in human gastric mucosa by immunohistochemistry, however, H. pylori infection failed to induce COX-2 protein. In addition, increased prostaglandin synthesis in Hp-infected patients appears to be COX-1 mediated rather than COX-2. Furthermore, failure of endotoxaemia-treated sample to produce more PGE(2) in the face of enhanced COX-2 expression in gastric mucosa further suggests that increased prostanoids in human gastric stomach are COX-1 mediated.  相似文献   

13.
Cyclooxygenase (COX)-2 expression is induced in the gastric mucosa of Helicobacter pylori-infected patients, but its role remains unclear. We examined the effects of NS-398 and indomethacin on gastric pathology in H. pylori-infected Mongolian gerbils. COX-1 was detected in both normal and H. pylori-infected mucosa, whereas COX-2 was expressed only in the infected mucosa. PGE(2) production was elevated by H. pylori infection, and the increased production was reduced by NS-398, which did not affect PGE(2) production in normal mucosa. Indomethacin inhibited PGE(2) production in both normal and infected mucosa. Hemorrhagic erosions, neutrophil infiltration, lymphoid follicles, and epithelium damage were induced by H. pylori infection. NS-398 and indomethacin aggravated these pathological changes but did not increase viable H. pylori number. H. pylori-increased production of neutrophil chemokine and interferon-gamma was potentiated by NS-398 and indomethacin. Neither NS-398 nor indomethacin caused any pathological changes or cytokine production in normal animals. These results indicate that COX-2 as well as COX-1 might play anti-inflammatory roles in H. pylori-induced gastritis.  相似文献   

14.
Cyclooxygenases (COXs) are rate-limiting enzymes that initiate the conversion of arachidonic acid to prostanoids. COX-2 is the inducible isoform that is up-regulated by proinflammatory agents, initiating many prostanoid-mediated pathological aspects of inflammation. The roles of cyclooxygenases and their products, PGs, have not been evaluated during respiratory syncytial virus (RSV) infection. In this study we demonstrate that COX-2 is induced by RSV infection of human lung alveolar epithelial cells with the concomitant production of PGs. COX-2 induction was dependent on the dose of virus and the time postinfection. PG production was inhibited preferentially by NS-398, a COX-2-specific inhibitor, and indomethacin, a pan-COX inhibitor, but not by SC-560, a COX-1-specific inhibitor. In vivo, COX-2 mRNA expression and protein production were strongly induced in the lungs and cells derived from bronchioalveolar lavage of cotton rats infected with RSV. The pattern of COX-2 expression in vivo in lungs is cyclical, with a final peak on day 5 that correlates with maximal histopathology. Treatment of cotton rats with indomethacin significantly mitigated lung histopathology produced by RSV. The studies described in this study provide the first evidence that COX-2 is a potential therapeutic target in RSV-induced disease.  相似文献   

15.
In vitro platelet function was inhibited in healthy volunteers by two different doses of aspirin, as confirmed by measurement of maximum serum production of thromboxane B2 (TXB2) by platelets. 75 mg aspirin did not fully inhibit serum TXB2 production after 24 hours, whereas 300 mg aspirin did. Inhibition of platelet function in vitro was maintained by both 75 mg/day aspirin or 300 mg/alternate day aspirin. In contrast, in vivo production of TXB2, measured as urinary levels of the 11-keto-TXB2 metabolite, was inhibited similarly by both doses of aspirin throughout the study. These findings suggest that 75 mg/day aspirin may be sufficient adequately to inhibit platelet aggregation in vivo.  相似文献   

16.
We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1β-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE2 without modulation of expression of COX-2 in IL-1β-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1β-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE2 production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE2 and proliferation of IL-1β-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1β-stimulated VSMC. NS-398 inhibited proliferation of IL-1β-stimulated VSMC in a HbO2-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1β-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.  相似文献   

17.
We studied whether NS-398, a selective cyclo-oxygenase-2 (COX-2) enzyme inhibitor, and piroxicam, an inhibitor of COX-2 and the constitutively expressed COX-1, protect neurones against hypoxia/reoxygenation injury. Rat spinal cord cultures were exposed to hypoxia for 20 h followed by reoxygenation. Hypoxia/reoxygenation increased lactate dehydrogenase (LDH) release, which was inhibited by piroxicam (180-270 microM) and NS-398 (30 microM). Cell counts confirmed the neuroprotection. Western blotting revealed no COX-1 or COX-2 proteins even after hypoxia/reoxygenation. Production of prostaglandin E2 (PGE2), a marker of COX activity, was barely measurable and piroxicam and NS-398 had no effect on the negligible PGE2 production. Hypoxia/reoxygenation increased nuclear factor-kappa B (NF-kappaB) binding activity, which was inhibited by piroxicam but not by NS-398. AP-1 binding activity after hypoxia/reoxygenation was inhibited by piroxicam but strongly enhanced by NS-398. However, both COX inhibitors induced activation of extracellular signal-regulated kinase (ERK) in neurones and phosphorylation of heavy molecular weight neurofilaments, cytoskeletal substrates of ERK. It is concluded that piroxicam and NS-398 protect neurones against hypoxia/reperfusion. The protection is independent of COX activity and not solely explained by modulation of NF-kappaB and AP-1 binding activity. Instead, piroxicam and NS-398-induced phosphorylation through ERK pathway may contribute to the increased neuronal survival.  相似文献   

18.
We recently reported that lipoteichoic acid (LTA), a cell wall component of the gram-positive bacterium Staphylococcus aureus, stimulated inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) release, and cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. This study was carried out to further investigate the roles of COX-2 and prostaglandin E2 (PGE2) in LTA-induced iNOS expression and NO release in RAW 264.7 macrophages. Treatment of RAW 264.7 macrophages with LTA caused a time-dependent increase in PGE2 release. LTA-induced iNOS expression and NO release were inhibited by a non-selective COX inhibitor (indomethacin), a selective COX-2 inhibitor (NS-398), an adenylyl cyclase (AC) inhibitor (dideoxyadenosine, DDA), and a protein kinase A (PKA) inhibitor (KT-5720). Furthermore, both PGE2 and the direct PKA activator, dibutyryl-cAMP, also induced iNOS expression in a concentration-dependent manner. Stimulation of RAW 264.7 macrophages with LTA, PGE2, and dibutyryl-cAMP all caused p38 MAPK activation in a time-dependent manner. LTA-mediated p38 MAPK activation was inhibited by indomethacin, NS-398, and SB 203580, but not by PD 98059. The PGE2-mediated p38 MAPK activation was inhibited by DDA, KT-5720, and SB 203580, but not by PD 98059. LTA caused time-dependent activation of the nuclear factor-kappaB (NF-kappaB)-specific DNA-protein complex formation. The LTA-induced increase in kappaB-luciferase activity was inhibited by indomethacin, NS-398, KT-5720, and a dominant negative mutant of p38 alphaMAPK (p38 alphaMAPK DN). These results suggest that LTA-induced iNOS expression and NO release involve COX-2-generated PGE2 production, and AC, PKA, p38 MAPK, and NF-kappaB activation in RAW 264.7 macrophages.  相似文献   

19.
20.
Occurrence of gastrointestinal damage and delayed healing of pre-existing ulcer are commonly observed in association with clinical use of nonsteroidal antiinflammatory drugs (NSAIDs). We examined the effects of NS-398, the cyclooxygenase (COX)-2 selective inhibitor, and nitric oxide (NO)- releasing aspirin (NCX-4016) on gastric mucosal ulcerogenic and healing responses in experimental animals, in comparison with those of nonselective COX inhibitors such as indomethacin and aspirin. Indomethacin and aspirin given orally were ulcerogenic by themselves in rat stomachs, while either NS-398 or NCX-4016 was not ulcerogenic at the doses which exert the equipotent antiinflammatory action with indomethacin or aspirin. Among these NSAIDs, only NCX-4016 showed a dose-dependent protection against gastric lesions induced by HCl/ethanol in rats. On the other hand, the healing of gastric ulcers induced in mice by thermal-cauterization was significantly delayed by repeated administration of these NSAIDs for more than 7 days, except NCX-4016. Gastric mucosal prostaglandin contents were reduced by indomethacin, aspirin and NCX-4016 in both normal and ulcerated mucosa, while NS-398 significantly decreased prostaglandin generation only in the ulcerated mucosa. Oral administration of NCX-4016 in pylorus-ligated rats and mice increased the levels of NO metabolites in the gastric contents. In addition, both NS-398 and NCX-4016 showed an equipotent anti-inflammatory effect against carrageenan-induced paw edema in rats as compared with indomethacin and aspirin. These results suggest that both indomethacin and aspirin are ulcerogenic by themselves and impair the healing of pre-existing gastric ulcers as well. The former action is due to inhibition of COX-1, while the latter effect may be accounted for by inhibition of COX-2 and mimicked by NS-398, the COX-2 selective NSAID. NCX-4016, despite inhibiting both COX-1 and COX-2, protects the stomach against damage and preserves the healing response of gastric ulcers, probably because of the beneficial action of NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号